This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Scientists paint quantum electronics with beams of light

10 October 2015

In a serendipitous discovery, US researchers were able to create quantum electronic devices from topological insulators using nothing more than light.

Artist’s rendition of optically defined quantum circuits in a topological insulator, courtesy of Peter Allen

A team of scientists from the University of Chicago and Penn State University has accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials called topological insulators.

In contrast to using advanced nanofabrication facilities based on chemical processing of materials, this flexible technique allows for rewritable 'optical fabrication' of devices. This finding is likely to spawn new developments in emerging technologies such as low-power electronics based on the spin of electrons or ultrafast quantum computers.

“This observation came as a complete surprise,” says UChicago's Professor David Awschalom, who was one of two lead researchers on the project. “It’s one of those rare moments in experimental science where a seemingly random event—turning on the room lights—generated unexpected effects with potentially important impacts in science and technology.” 

The electrons in topological insulators have unique quantum properties that many scientists believe will be useful for developing spin-based electronics and quantum computers. However, making even the simplest experimental circuits with these materials has proved difficult because traditional semiconductor engineering techniques tend to destroy their fragile quantum properties. Even a brief exposure to air can reduce their quality.

The researchers discovered an optical effect that allows them to 'tune' the energy of electrons in these materials using light, and without ever having to touch the material itself. They have used it to draw and erase p-n junctions in a topological insulator for the first time.

Like many advances in science, the path to this discovery had an unexpected twist.

“To be honest, we were trying to study something completely different,” said Andrew Yeats, a graduate student in Awschalom’s laboratory. “There was a slow drift in our measurements that we traced to a particular type of fluorescent lights in our lab. At first we were glad to be rid of it, and then it struck us — our room lights were doing something that people work very hard to do in these materials.”

The researchers went back to Bulley & Andrews Construction, the contractor that renovated the lab space, for more information about the lights. “I’ve never had a client so obsessed with the overhead lighting,” said Frank Floss, superintendent for Bulley & Andrews. “I could have never imagined how important it would turn out to be.”  

The researchers found that the surface of strontium titanate, the substrate material on which they had grown their samples, becomes electrically polarized when exposed to ultraviolet light, and their room lights happened to emit at just the right wavelength. The electric field from the polarized strontium titanate was leaking into the topological insulator layer, changing its electronic properties.

Graduate students Andrew Yeats (left) and Peter Mintun, co-authors of the Science Advances paper (photo: Joel Wintermantle)

Awschalom and his colleagues found that by intentionally focusing beams of light on their samples, they could draw electronic structures that persisted long after the light was removed.

“It’s like having a sort of quantum 'Etch A Sketch' in our lab,” he says. They also found that bright red light counteracted the effect of the ultraviolet light, allowing them to both write and erase.

“Instead of spending weeks in the cleanroom and potentially contaminating our materials,” said Awschalom, “now we can sketch and measure devices for our experiments in real time. When we’re done, we just erase it and make something else. We can do this in less than a second.”

To test whether the new technique might interfere with the unique properties of topological insulators, the team measured their samples in high magnetic fields. They found promising signatures of an effect called weak anti-localization, which arises from quantum interference between the different simultaneous paths that electrons can take through a material when they behave as waves.

“One exciting aspect of this work is that it’s noninvasive,” says Penn State's Professor Nitin Samarth, a lead researcher on the project. “Since the electrical polarization occurs in an adjacent material, and the effect persists in the dark, the topological insulator remains relatively undisturbed. With these fragile quantum materials, sometimes you have to use a light touch.”

To better understand the physics behind the effect, the researchers conducted a number of control measurements. They showed that the optical effect is not unique to topological insulators, but that it can act on other materials grown on strontium titanate as well.

“In a way, the most exciting aspect of this work is that it should be applicable to a wide range of nanoscale materials such as complex oxides, graphene and transition metal dichalcogenides,” says Awschalom. “It’s not just that it’s faster and easier. This effect could allow electrical tuning of materials in a wide range of optical, magnetic and spectroscopic experiments where electrical contacts are extremely difficult or simply impossible.”

The research is published in the American Association for the Advancement of Science’s new online journal, Science Advances.

Print this page | E-mail this page