This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Methodology could lead to more sustainable manufacturing systems

15 October 2015

System helps manufacturing engineers consider the ramifications of their design decisions and evaluate the possible different ways that a product could be built.

A bevel gear component made of solid steel: one approach to producing the part (graphic courtesy of Oregon State University)

Engineers at Oregon State University (OSU) have developed a new 'sustainable development methodology' to help address a social and regulatory demand for manufacturing processes that more effectively consider their economic, environmental and social impacts.

The work (recently published in the Journal of Cleaner Production) outlines a way to help designers and manufacturing engineers carefully consider all the ramifications of their design decisions, and to evaluate the possible different ways that a product could be built - before it ever hits the assembly line.

"There's a lot of demand by consumers, workers and companies who want to make progress on the sustainability of products and manufacturing processes," says Karl Haapala, an associate professor in the OSU College of Engineering. "There's usually more than one way to build a part or product. With careful analysis we can identify ways to determine which approach may have the least environmental impact, lowest cost, least waste, or other advantages that make it preferable to a different approach."

This movement, researchers say, evolved more than 20 years ago from an international discussion at the United Nations Conference on Environment and Development, which raised concerns about the growing scarcity of water, depletion of non-renewable sources of energy, human health problems in the workplace, and other issues that can be linked to unsustainable production patterns in industry.

The challenge, experts say, is how to consider the well-being of employees, customers, and the community, all while producing a quality product and staying economically competitive. It isn't easy, and comprehensive models that assess all aspects of sustainability are almost nonexistent.

Unlike the unit illustrated above, this bevel gear is mechanically joined with a strong steel gear but lighter weight titanium shaft (graphic courtesy of Oregon State University)

"With current tools you can analyse various aspects of an operation one at a time, like the advantages of different materials, transportation modes, energy used, or other factors," Haapala says. "It's much more difficult to consider all of them simultaneously and come out with a reasonable conclusion about which approach is best."

To aid that effort, OSU researchers created a new methodology that incorporates unit process modelling and an existing technique called life-cycle inventory. This allowed them to quantify a selected set of sustainability metrics, and ask real-world questions. Should the product use a different material? Would running the production line faster be worth the extra energy used or impact on worker health and safety? Which approach might lead to injuries and more lost work? How can scrap and waste be minimised? Which design alternative will generate the least greenhouse gas emissions?

To illustrate this approach in the study, the researchers used three hypothetical 'bevel gear' alternatives, a common part produced in the aircraft and automotive industry. Their six-step system considered energy consumption, water use, effluent discharge, occupational health and safety, operating cost, and other factors to evaluate the use of different materials and manufacturing processes - and ultimately concluded through mathematical modelling which of three possible designs was the most sustainable.

"When you make decisions about what is best, you may make value judgements about what aspect of sustainability is most important to you," Haapala says. "But the modelling results have the potential to assist designers in performing those evaluations and in understanding the tradeoffs alongside other aspects of the manufacturing process."

According to the researchers, this assessment approach, when further researched and tested, should be applicable to a wide range of products during the design decision-making process.


Print this page | E-mail this page