This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

'Pop-up' sensor might aid robotic surgery

15 November 2015

Origami and pop-up books inspire Harvard researchers to develop low-cost, millimetre-scale sensors that might have a role in clinical laparoscopy and endoscopy.

Photorealistic rendering of the sensor encapsulated into a catheter (courtesy of HArvard SEAS and Wyss Institute for Biologically Inspired Engineering at Harvard)

Surgical robots have been shown to reduce hospital stays and the likelihood of error and infection, while increasing a surgeon’s field of vision and range of motion inside the body. New flexible and soft robotic tools that can snake through twisting and hard-to-reach areas of the body offer even more promise.

But, despite advances in surgical robotics, there is still something human hands can do better than robotic arms: feel. So far, no robotic tool can match the human hand in its ability to sense and adjust force. however, that may be about to change.

Recent research from Harvard's School of Engineering and Applied Science and the Wyss Institute for Biologically Inspired Engineering at Harvard explores a new method to build low-cost, millimetre-scale force sensors.

The research, authored by graduate student Joshua Gafford; Robert J. Wood, the Charles River Professor of Engineering and Applied Sciences; and Conor Walsh, Assistant Professor of Mechanical and Biomedical Engineering, was recently published in IEEE Sensors Journal. Wood and Walsh are both Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

The biggest challenge in developing force sensors for robotic surgical tools is size. Soft robotic surgical systems, for obvious reasons, need to be small and the sensors that sit on the system’s robotic fingertips need to be even smaller.

“Current conventional fabrication techniques limit the complexity and the sophistication of these millimetre-sized sensors while significantly driving up the cost of assembly and implementation,” says graduate student Joshua Gafford, co-author of a paper describing the research in IEEE Sensors Journal. “This poses a barrier to widespread adoption of force-sensing soft robotic surgical tools that can perform minimally invasive and complex surgeries in an inherently safe way.”

To solve this manufacturing problem, Gafford turned to a manufacturing technique pioneered in co-author, Professor Robert Wood's laboratory: pop-up manufacturing. Inspired by origami and pop-up books, this technique fabricates complex micro-machines by layering laser-cut materials into thin, flat plates that pop up into a complete electromechanical devices. This fabrication approach has the potential to remove the human element from the assembly process by allowing devices to ‘build themselves', significantly driving down the cost of manufacturing.

The sensor consists of four layers of laser-machined stainless steel sandwiched together and laminated with a flexible polyimide layer to facilitate self-assembly, and copper to provide electrical contacts. When agitated in an ultrasonic bath, this 2D structure pops-up into a boxy 3D sensor via an integrated spring. With a footprint of 2.7mm, the sensors are small enough to pass through the working port of an 8.6mm endoscope.

The sensor uses a principle called light intensity modulation (LIM) to sense force at the milli-Newton level. LIM works by connecting a light emitter and a light detector with an elastic element. When force is applied, the elastic element deforms, bringing the emitter and detector closer together. The change in irradiance sensed by the detector can be translated into applied force.

The next step in the research, said Gafford, is to make the sensor even smaller and more robust, eventually providing flexible surgical robots with a sense of ‘touch.’

“The ability to rapidly and inexpensively create millimetre-scale surgical tools with embedded sensors and actuators will find numerous applications in laparoscopy and endoscopy,” says Professor Wood.


Print this page | E-mail this page