This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Mussels provide new inspiration for underwater adhesives

25 November 2015

Researchers have designed a synthetic material that combines the key functions of interfacial mussel foot proteins, creating a one-component adhesive.

A mussel uses its filamentous byssal threads to attach to wet surfaces (photo: Sonia Fernandez)

"We have successfully mimicked the biological adhesive delivery mechanism in water with an unprecedented level of underwater adhesion," says University of California Santa Barbara (UCSB) researcher, Kollbe Ahn, lead author of an article describing the work in the journal, Nature Communications.

An adhesive primer that can overcome the barrier of water and contaminant 'biofilm' layers to adhere to virtually any mineral or metal oxide surface has a variety of applications, from basic repair of materials regularly exposed to salty water, to biomedical and dental uses, as well as nanofabrication.

"More importantly, this less than two nanometre-thin layer can be used not only at the nano-length scale, but also in the macro-length scale to boost the performance of current bulk adhesives," Ahn adds.

Inspired by mussels' ability to cling to surfaces despite the constant pounding of waves and wind, the UCSB scientists studied the combination of proteins mussels secrete in the form of byssus threads that extend from their feet and anchor them to rocks, pilings or any other surface in their vicinity.

The work builds upon research conducted by UCSB professor J. Herbert Waite, who for three decades has investigated the adhesion strategies employed by mussels in the inhospitable rocky intertidal zone. While wet adhesion is an adaptation that is widespread among inhabitants of the intertidal zone, mussels in particular lend themselves to the kind of fundamental research necessary to understand how it is possible to stick to something wet or submerged.

"They actually stockpile everything they use to stick to the surface in finite quantities that can be purified and characterised," says Waite. "That has to be done before you can copy it."

But science had struggled to emulate the ability the molluscs have developed over hundreds of millions of years of evolution. According to Ahn, at least part of the reason for the difficulty has been the lack of a deep and fundamental understanding of the biological mechanism at the molecular level, leading to synthetic adhesives that have generally fallen short in the quality of adhesion and often required complex and somewhat impractical processing and functionalization.

While collaborating with colleagues from the Technion-Israel Institute of Technology, the UCSB research team developed a less complex material that nevertheless demonstrates a record high wet (or underwater) adhesion - up to ten times the effectiveness previously demonstrated in other such materials.

Key to this technology is the synthesis of a material that combines the key functional molecular groups of several residues found in the biological adhesion proteins. In mussel feet, the amino acid L-Dopa (also used in humans as a treatment for Parkinson's disease) contains hydrogen-bonding chemical groups called catechols.

These are found in especially high quantities at the interface between the plaques at the ends of the byssus threads the mussels secrete, and the often wet and submerged surfaces to which they adhere. By mimicking the characteristics of mussel foot proteins that are particularly rich in this amino acid, Ahn and colleagues designed a molecule that can prime and fuse two surfaces underwater.

To date, the researchers have studied the practical electronic and biomedical applications of this and other families of self-assembled monomolecular-layer catechols and have three patents pending. In addition, they have launched a company, NanoM Technologies, to further develop this technology.

Applications of this catecholic adhesive primer are diverse. It can be used to prime or stick surfaces that regularly come into contact with the elements, or added to materials to make them self-healing in wet situations.

Additionally, the small molecules of this adhesive form atomically smooth, ultra-thin glue layers, which hold particular promise for the fabrication of nano-scale electronic devices, including circuits and battery components.

The spontaneous coating process, according to Ahn, is based on molecular self-assembly in water, without the aid of toxic chemicals, volatile organic solvents or external energy inputs such as heat or light - a sustainable and environmentally friendly process that satisfies the requirements of the emerging discipline of green chemistry.


Print this page | E-mail this page