This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Single test detects multiple explosives simultaneously

10 December 2015

A proof-of-concept sensor can identify and quantify five commonly used explosives in solution to help track toxic contamination in waste water.

Sniffing out the bombs (courtesy of Sgt. Kimberly Bratic via Wikimedia Commons)

“This is the first time multiple explosives have been detected using a single sensor, demonstrating proof-of-concept for this approach," says lead researcher, Dr William Peveler of University College London (UCL). "Our sensor changes colour within ten seconds to give information about how much and what explosives are present in a sample. Following further development, we hope it will be used to quickly analyse the nature of threats and inform tailored responses.”

The study, published today in the journal, ACS Nano and funded by the Engineering and Physical Sciences Research Council (EPSRC), used a fluorescent sensor to detect and differentiate between DNT, TNT, tetryl, RDX and PETN by reading unique colour change ‘fingerprints’ for each compound.

“We analysed explosives which are commonly used for industrial and military purposes to create a useful tool for environmental and security monitoring," Dr Peveler adds. "For example, DNT is a breakdown product from land mines, and RDX and PETN have been used in terror plots in recent years as they can be hard to detect using sniffer dogs. Our test can quickly identify these compounds so we see it having a variety of applications from monitoring the waste water of munitions factories and military ranges to finding evidence of illicit activities.”

The sensor is made of quantum dots - tiny light-emitting particles or nanomaterials, to which explosive targeting receptors are attached. As each explosive binds to the quantum dot, it quenches the light being emitted to a different degree. The distinct changes in colour are analysed computationally in a variety of conditions to give a unique fingerprint for each compound, allowing multiple explosives to be detected with a single test.

“Our sensor is a significant step forward for multiple explosives detection," says senior author of the ACS Nano article, UCL's Professor Ivan Parkin. "Current methods can be laborious and require expensive equipment but our test is designed to be inexpensive, fast and use a much smaller volume of sample than previously possible. Although all of these factors are important, speed and accuracy are crucial when identifying explosive compounds.”

The team plan to take it from the laboratory into the field by blind testing it with contaminated waste water samples. They also hope to improve the sensitivity of the test by tailoring the surfaces of the quantum dots. Currently, its limit is less than one part per million which the team hope to increase into the part per billion range.

Illustration courtesy of Sgt. Kimberly Bratic via Wikimedia Commons

Print this page | E-mail this page

Coda Systems