This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Metamaterial manipulates sound to improve acoustic imaging

17 December 2015

US researchers have developed a metamaterial made of paper and aluminium that can manipulate acoustic waves to more than double the resolution of acoustic imaging.

The metamaterial, shown here, is made of paper and aluminium -- but its structure allows it to manipulate acoustic waves to more than double the resolution of acoustic imaging (photo: Chen Shen, North Carolina State University)

Researchers from North Carolina State University (NC State) and Duke University have developed a metamaterial made of paper and aluminium that can manipulate acoustic waves to more than double the resolution of acoustic imaging, focus acoustic waves, and control the angles at which sound passes through the metamaterial. Acoustic imaging tools are used in both medical diagnostics and in testing the structural integrity of everything from airplanes to bridges.

"This metamaterial is something that we've known is theoretically possible, but no one had actually made it before," says Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of a paper describing the work.

Metamaterials are simply materials that have been engineered to exhibit properties that are not found in nature. In this case, the structural design of the metamaterial gives it qualities that make it a 'hyperbolic"' metamaterial, meaning that it interacts with acoustic waves in two different ways.

From one direction, the metamaterial exhibits a positive density and interacts with acoustic waves normally - just like air. But from a perpendicular direction, the metamaterial exhibits a negative density in terms of how it interacts with sound. This effectively makes acoustic waves bend at angles that are the exact opposite of what basic physics would tell you to expect.

The practical effect of this is that the metamaterial has some very useful applications. For one, it can be used to improve acoustic imaging. Traditionally, acoustic imaging could not achieve image resolution that was smaller than half of a sound's wavelength. For example, an acoustic wave of 100kHz, travelling through air, has a wavelength of 3.4mm - so it couldn't achieve image resolution smaller than 1.7mm.

"But our metamaterial improves on that," says NC State researcher and lead author of the paper, Chen Shen. "By placing the metamaterial between the imaging device and the object being imaged, we were able to more than double the resolution of the acoustic imaging - from one-half the sound's wavelength to greater than one-fifth."

The metamaterial can also focus acoustic waves, which makes it a flexible tool.

"Medical personnel and structural engineers sometimes need to focus sound for imaging or therapeutic purposes," Jing says. "Our metamaterial can do that, or it can be used to improve resolution. There are few tools out there that can do both."

Moreover, the metamaterial gives researchers more control over the angle at which acoustic waves can pass through it.

"For example, the metamaterial could be designed to block sound from most angles, leaving only a small opening for sound to pass through, which might be useful for microphones," Shen says. "Or you could leave it wide open - it's extremely flexible."

Currently, the prototype metamaterial is approximately 30cm square, and is effective for sounds between 1 and 2.5kHz.

"Our next steps are to make the structure much smaller, and to make it operate at higher frequencies," Jing says.

Print this page | E-mail this page