This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

MIT researchers construct solar cells as light as a soap bubble

27 February 2016

Researchers at MIT have demonstrated solar cells so thin, flexible, and lightweight that they could be placed on almost any material or surface.

An MIT team has achieved the thinnest and lightest complete solar cells ever made, and prove the claim by draping a working cell on top of a soap bubble, without popping it (photo: Joel Jean and Anna Osherov)

Though it may take years to develop into a commercial product, the laboratory proof-of-concept shows a new approach to making solar cells that could help power the next generation of portable electronic devices.

The new process is described in a paper by MIT professor Vladimir Bulovic, research scientist Annie Wang, and doctoral student Joel Jean, in the journal, Organic Electronics.

Bulovic says the key to the new approach is to make the solar cell, the substrate that supports it, and a protective overcoating to shield it from the environment, all in one process. The substrate is made in place and never needs to be handled, cleaned, or removed from the vacuum during fabrication, thus minimising exposure to dust or other contaminants that could degrade the cell’s performance.

In this initial proof-of-concept experiment, the team used parylene, a common flexible polymer, as both the substrate and the over-coating, and an organic material called DBP as the primary light-absorbing layer. The entire process takes place in a vacuum chamber at room temperature and without the use of any solvents, unlike conventional solar-cell manufacturing, which requires high temperatures and harsh chemicals. In this case, both the substrate and the solar cell are 'grown' using established vapour deposition techniques.

The team emphasises that these particular choices of materials were just examples, and that it is the in-line substrate manufacturing process that is the key innovation. Different materials could be used for the substrate and encapsulation layers, and different types of thin-film solar cell materials, including quantum dots or perovskites, could be substituted for the organic layers used in initial tests.

To demonstrate just how thin and lightweight the cells are, the researchers draped a working cell on top of a soap bubble, without popping it. The researchers acknowledge that this cell may be too thin to be practical — “If you breathe too hard, you might blow it away,” says Jean — but parylene films of thicknesses of up to 80 microns can be deposited easily using commercial equipment, without losing the other benefits of in-line substrate formation.

A flexible parylene film, similar to kitchen cling-wrap but only one-tenth as thick, is first deposited on a sturdier carrier material – in this case, glass. Figuring out how to cleanly separate the thin material from the glass was a key challenge, explains Wang, who has spent many years working with parylene.

The researchers lift the entire parylene/solar cell/parylene stack off the carrier after the  fabrication process is complete, using a frame made of flexible film. The final ultra-thin, flexible solar cells, including substrate and over-coating, are just one-fiftieth of the thickness of a human hair and one-thousandth of the thickness of equivalent cells on glass substrates — about two micrometres thick — yet they convert sunlight into electricity just as efficiently as their glass-based counterparts.

While the solar cell in this demonstration device is not especially efficient, because of its low weight, its power-to-weight ratio is among the highest ever achieved. That’s important for applications where weight is important, such as on spacecraft or on high-altitude helium balloons used for research. Whereas a typical silicon-based solar module, whose weight is dominated by a glass cover, may produce about 15W of power per kilogram of weight, the new cells have already demonstrated an output of 6W per gram — about 400 times higher.


Contact Details and Archive...

Print this page | E-mail this page