This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

ESA delivers first prototype 3D printed antenna

22 March 2016

A prototype 3D-printed antenna is being put to work in ESA’s Compact Antenna Test Facility, a shielded chamber for antenna and radio-frequency testing.

3D printed antenna (Credit: ESA)

“This is the Agency’s first 3D-printed dual-reflector antenna,” explains engineer Maarten van der Vorst, who designed it.

“Incorporating a corrugated feedhorn and two reflectors, it has been printed all-in-one in a polymer, then plated with copper to meet its radio-frequency (RF) performance requirements.

“Designed for future mega-constellation small satellite platforms, it would need further qualification to make it suitable for real space missions, but at this stage we’re most interested in the consequences on RF performance of the low-cost 3D-printing process.”

“Although the surface finish is rougher than for a traditionally manufactured antenna, we’re very happy with the resulting performance,” says antenna test engineer Luis Rolo.

“We have a very good agreement between the measurements and the simulations. Making a simulation based on a complete 3D model of the antenna leads to a significant increase in its accuracy.

“By using this same model to 3D print it in a single piece, any source of assembly misalignments and errors are removed, enabling such excellent results.”

Two different antennas were produced by Swiss company SWISSto12, employing a special copper-plating technique to coat the complex shapes.

“As a next step, we aim at more complex geometries and target higher frequencies,” adds Maarten, a member of ESA’s Electromagnetics & Space Environment Division. “And eventually we want to build space-qualified RF components for Earth observation and science instruments.”

Based at ESA’s ESTEC technical centre in Noordwijk, the Netherlands, the test range is isolated from outside electromagnetic radiation while its inside walls are covered with ‘anechoic’ foam to absorb radio signals, simulating infinite space.

The range is part of ESA’s suite of antenna testing facilities, intended for smaller antennas and subsystems, with larger antennas and entire satellites put to the test in its ‘big brother’, the Hertz chamber.

For more information visit the ESA website


Print this page | E-mail this page