This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

The time for unmanned, autonomous ships has arrived

31 March 2016

Researchers at Korea Advanced Institute of Science and Technology (KAIST) are developing technologies to facilitate unmanned autonomous ships in the future.

Autonomous cargo ships whose concepts were designed by Rolls Royce. (Copyright : KAIST)

Unmanned ships (i.e. robotic ships or drone ships) have received relatively little media attention compared to aerial drones and self-driving cars. However, their potential benefit and impact to scientific, defence, and industrial applications could be immense. 

Compared to unmanned aerial and ground vehicles, relatively little public attention has been paid to unmanned robotic ships, which are more commonly known as unmanned surface vessels (USVs). In fact, USVs have long attracted research interest in defence sectors for their applicability toward unmanned reconnaissance and surveillance missions. Recently, greater emphasis has been placed on USV intelligence and autonomy, and, in particular, USV usage in scientific and industrial applications has been more seriously investigated.

In line with this, the inaugural Maritime RobotX Challenge (MRC), sponsored by the U.S. Office of Naval Research (ONR), was held in Singapore in 2014. The competition was composed of five mission tasks that were designed considering the capability and potential applicability of USVs in the future. Intelligence was a key factor, and all the mission tasks were required to be performed autonomously with no human intervention. Team “Angry Nerds” led by Prof. Jinwhan Kim in the Department of Mechanical Engineering at KAIST participated in the competition. After a fierce week-long competition, the KAIST team advanced to the final and took the second place out of 15 teams 

The KAIST research team has continued to carry out research projects for developing USV system technologies, funded by the Korean government. The team has been particularly focusing on developing vehicle autonomy and perception capabilities by fusing various sensor information. The developed USV system is expected to be applied to time-consuming and/or dangerous operations in marine environments such as hydrographic surveys, environmental monitoring, illegal fishing control, pollution management, and search and rescue.

The team is also pursuing research towards automation of commercial ships for improved operational safety and efficiency. This has been an important issue in marine shipbuilding and transportation industries with increasing labour and energy costs and the new energy efficiency regulations imposed by the International Maritime Organisation (IMO). Major research institutions and companies in Europe are already devoting great research effort and KAIST has been trying to support the world’s leading Korean shipbuilding industries to maintain their competitiveness and initiatives in next-generation shipping technology.

Click here for more information.

Print this page | E-mail this page

Coda Systems