This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Space Station crew 3D prints first student-designed tool in space

20 June 2016

When NASA fired up the Additive Manufacturing Facility on the ISS to begin testing of 3D printing technology in orbit, one college student in particular watched intently.

The Mulitpurpose Precision Maintenance Tool, created by University of Alabama in Huntsville student Robert Hillan as part of the Future Engineers Space Tool Challenge, was printed on the International Space Station. (Credit: NASA)

In autumn of 2014, a high school senior in Enterprise, Alabama, Robert Hillan entered the Future Engineers Space Tool design competition, which challenged students to create a device astronauts could use in space. The catch was that it must upload electronically and print on the new 3D printer that was going to be installed on the orbiting laboratory.

In January 2015, NASA and the American Society of Mechanical Engineers Foundation announced that Hillan's design, a Multipurpose Precision Maintenance Tool, was selected out of hundreds of entries to be printed on the station.

"Our challenges invite students to invent objects for astronauts, which can be both inspiring and incredibly tough," said Deanne Bell, founder and director of the Future Engineers challenges. "Students must have the creativity to innovate for the unique environment of space, but also the practical, hands-on knowledge to make something functional and useful. It’s a delicate balance, but this combination of creativity, analytical skills, and fluency in current technology is at the heart of engineering education."

Hillan's design features multiple tools on one compact unit, including different sized wrenches, drives to attach sockets, a precision measuring tool for wire gauges, and a single-edged wire stripper. After the new manufacturing facility was installed on the station in March, NASA uploaded Hillan's design to be printed.

As a bonus, Hillan was invited to watch his tool come off the printer from a unique vantage point. On June 15, standing amidst the flight controllers in the Payload Operations Integration Centre at NASA's Marshall Space Flight Centre in Huntsville, Alabama, which is mission control for space station science, Hillan looked on as NASA astronaut Jeff Williams displayed the finished tool from the station's Additive Manufacturing Facility. The Marshall Centre is located just a few miles from where Hillan is a sophomore engineering student at the University of Alabama in Huntsville.

"I am extremely grateful that I was given the opportunity to design something for fabrication on the space station," Hillan said. "I have always had a passion for space exploration, and space travel in general. I designed the tool to adapt to different situations, and as a result I hope to see variants of the tool being used in the future, hopefully when it can be created using stronger materials."

Not only did Hillan get to watch his tool being made, he also got to spend a few minutes chatting with astronauts on the station.

NASA astronaut Tim Kopra, a current station crew member, congratulated Hillan, saying "When you have a problem, it will drive specific requirements and solutions. 3D printing allows you to do a quick design to meet those requirements. That's the beauty of this tool and this technology. You can produce something you hadn't anticipated and do it on short notice."

The space station's 3D printer caught national headlines late in 2014 when it started operations and built nearly two dozen sample designs that were returned to the Marshall Centre for further testing. NASA is continuing 3D printing development that will prove helpful on the journey to Mars with the newly installed Additive Manufacturing Facility.

"When a part breaks or a tool is misplaced, it is difficult and cost-prohibitive to send up a replacement part," said Niki Werkheiser, NASA's 3D Printer program manager at Marshall. "With this technology, we can build what is needed on demand instead of waiting for resupply. We may even be able to build entire structures using materials we find on Mars."

NASA’s Advanced Exploration Systems Division, in partnership with the American Society of Mechanical Engineers Foundation, continues to provide an ongoing series of Future Engineers 3D Space Design Challenges. Through these challenges, students become the creators and innovators of tomorrow by using 3D modeling software to submit their designs of 3D printable objects for an astronaut to theoretically use in space. 

Video courtesy of Made In Space.


Print this page | E-mail this page