This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

World’s most sensitive dark matter detector completes search

25 July 2016

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock, completed its search for the missing matter of the universe.

A view of the LUX detector during installation. (Photo by Matthew Kapust/Sanford Underground Research Facility)

At an international dark matter conference (IDM 2016) in Sheffield, UK, LUX scientific collaborators presented the results from the detector’s final 20 month run from October 2014 to May 2016. The new research result is also described with further details on the LUX Collaboration’s website: http://luxdarkmatter.org

LUX’s sensitivity far exceeded the original expectations of the experiment, collaboration scientists said, but yielded no trace of a dark matter particle. LUX’s extreme sensitivity makes the team confident that if dark matter particles had interacted with the LUX’s xenon target, the detector would almost certainly have seen them. These new limits on dark matter detection will allow scientists to eliminate many potential models for dark matter particles, offering critical guidance for the next generation of dark matter experiments.

“LUX has delivered the world’s best search sensitivity since its first run in 2013,” said Rick Gaitskell, professor of physics at Brown University and co-spokesperson for the LUX experiment. “With this final result from the 2014-2016 run, the scientists of the LUX Collaboration have pushed the sensitivity of the instrument to a final performance level that is four times better than originally expected. It would have been marvellous if the improved sensitivity had also delivered a clear dark matter signal. However, what we have observed is consistent with background alone.”

Dark matter is thought to account for more than four-fifths of the mass in the universe. Scientists are confident of its existence because the effects of its gravity can be seen in the rotation of galaxies and in the way light bends as it travels through the universe, but experiments have yet to make direct contact with a dark matter particle. The LUX experiment was designed to look for weakly interacting massive particles, or WIMPs, the leading theoretical candidate for a dark matter particle. If the WIMP idea is correct, billions of these particles pass through your hand every second, and also through the Earth and everything on it. But because WIMPs interact so weakly with ordinary matter, this ghostly traverse goes entirely unnoticed.

The LUX detector consists of a third-of-a-ton of cooled liquid xenon surrounded by powerful sensors designed to detect the tiny flash of light and electrical charge emitted if a WIMP collides with a xenon atom within the tank. The detector’s location at Sanford Lab beneath a mile of rock, and inside a 327,318L, high-purity water tank, helps shield it from cosmic rays and other radiation that would interfere with a dark matter signal.

The 20 month run of LUX represents one of the largest exposures ever collected by a dark matter experiment, the researchers said. The rapid analysis of nearly a half-million gigabytes of data was made possible with the use Brown University’s Centre for Computation and Visualisation (CCV) and the advanced computer simulations at Lawrence Berkeley National Laboratory’s (Berkeley Lab) National Energy Research Scientific Computing Centre (NERSC), a U.S. Department of Energy (DOE) Office of Science User Facility. Berkeley Lab is also the lead DOE laboratory for LUX operations.

Careful calibration

The exquisite sensitivity achieved by the LUX experiment came thanks to a series of pioneering calibration measures aimed at helping scientists tell the difference between a dark matter signal and events created by residual background radiation that even the elaborate construction of the experiment cannot completely block out.

A view inside the LUX detector. (Photo by Matthew Kapust/Sanford Underground Research Facility)

“As the charge and light signal response of the LUX experiment varied slightly over the dark matter search period, our calibrations allowed us to consistently reject radioactive backgrounds, maintain a well-defined dark matter signature for which to search and compensate for a small static charge build-up on the Teflon inner detector walls,” said Dan McKinsey, professor of physics at the University of California, Berkeley, senior faculty scientist at Berkeley Lab, and co-spokesperson for the LUX experiment.

“We worked hard and stayed vigilant over more than a year and a half to keep the detector running in optimal conditions and maximise useful data time,” said Simon Fiorucci, a physicist at Berkeley Lab and Science Coordination Manager for the experiment. “The result is unambiguous data we can be proud of and a timely result in this very competitive field—even if it is not the positive detection we were all hoping for.”

The quest continues

While the LUX experiment successfully eliminated a large swath of mass ranges and interaction-coupling strengths where WIMPs might exist, the WIMP model itself, “remains alive and viable,” said Gaitskell, the Brown University physicist. And the meticulous work of LUX scientists will aid future direct detection experiments.

Among those next generation experiments will be the LUX-ZEPLIN (LZ) experiment, which will replace LUX at the Sanford Underground Research Facility.

Compared to LUX’s one-third-ton of liquid xenon, LZ will have a 10,000kg liquid xenon target, which will fit inside the same tank of pure water used by LUX to help fend off external radiation. LZ is expected to have 70 times the sensitivity of LUX and will continue the search in 2020. 

“The announcement of this new result from LUX raises the bar in the search for dark matter, exceeding our expectations,” said Natalie Roe, Physics Division Director at Berkeley Lab. “With the successful completion of LUX, we are now focused on the success of LZ, which we hope will produce a dramatic discovery.”

More information can be found on the Berkeley Lab website.


Print this page | E-mail this page