This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Spinning electrons could lead to new electronics

08 August 2016

Among the unusual properties of graphene, one of the most exciting and least understood is the additional degree of freedom experienced by electrons.

Image courtesy of The University of Manchester

It is called the pseudospin and it determines the probability to find electrons on neighbouring carbon atoms. The possibility to control this degree of freedom would allow for new types of experiments, but potentially also enable to use it for electronic applications.

Now, writing in Science, Manchester physicists demonstrate how electrons with well-controlled pseudospin can be injected into graphene. The scientists used two layers of graphene, rotated by a small angle with respect to each other and separated by a thin layer of boron nitride, another two-dimensional material and an excellent insulator.

Applying a strong magnetic field parallel to the graphene layers, the pseudospin state of the tunnelling electrons can be chosen.

Graphene was first isolated from graphite at The University of Manchester in 2004. Its range of superlative properties, including strength, conductivity, flexibility and transparency, has paved the way for applications ranging from water filtration to bendable smartphones; from rust-proof coatings to anti-cancer drug delivery systems.

Combining graphene with other materials, which individually have excellent characteristics complimentary to the extraordinary properties of graphene, has resulted in exciting scientific developments and could produce applications as yet beyond our imagination.

Sir Kostya Novoselov, who along with colleague Sir Andre Geim was awarded the Nobel prize for Physics for their ground-breaking experiments on graphene, believes the findings could have a significant impact.

He said: “Our experiments offer an unprecedented control over the quantum state of the electrons in graphene”.


Print this page | E-mail this page