This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Fibre-optic lasers for future manufacturing

30 September 2016

New fibre-optic lasers that can deliver high-power beams efficiently over long distances are soon to be developed for the manufacturing industry.

Shutterstock image

The lasers are to be developed by a new Royal Academy of Engineering Research Chair at the University of Southampton, with support from SPI Lasers.

Professor Michalis Zervas, of the University’s Optoelectronic Research Centre, will build on his years of research in high-power fibre lasers to develop the next generation of laser technology, which will exploit novel features of fibre lasers to be used in manufacturing.

The SPI Lasers/ oyal Academy of Engineering Chair in Advanced Fibre Laser Technologies for Future Manufacturing will develop new passive and active fibre technologies, with precisely engineered materials to make fibre-optic lasers 'smarter', more stable and efficient. This includes using novel composite materials for both the inner core and the outer cladding of the fibres, as well as doping – deliberately introducing impurities into the fibres to enhance their performance.

The new technologies will enable the scaling up of powerful fibre lasers with added functionality but a smaller footprint. This allows precise control over the shape of the laser beam, its polarisation, and wavelength – features that can be exploited in new laser manufacturing tools for precise welding, cutting and additive manufacturing.

The new generation of fibres will also enable laser light to be delivered over long distances without impairments, enabling smart deployment in industrial settings where flexible, reconfigurable and fully automated factories are increasingly using robotics to remotely deliver laser power.

Professor Zervas said “Looking further into the future, the next stage of our research will aim to provide stable 10s to 100kW beams over long distances, and take fibre lasers to where other types of laser cannot go. In addition to intelligent manufacturing, these high-power lasers could also have important national security applications.”

Professor Ric Parker CBE FREng, Chair of the Academy’s Research Committee, said “Professor Zervas brings together the expertise in materials, optics and electronics that is necessary to engineer the next generation of powerful, smart lasers. The Royal Academy of Engineering is delighted to support him as a new Research Chair, and we look forward to seeing how advances in this technology will be deployed in industry of the near future.”




Print this page | E-mail this page