This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Use your body, not Wi-Fi, to transmit secure passwords

30 September 2016

Researchers devised a way to send passwords through the body using low-frequency transmissions generated by sensors and touchpads on devices.

Shutterstock image

“Fingerprint sensors have so far been used as an input device. What is cool is that we’ve shown for the first time that fingerprint sensors can be re-purposed to send out information that is confined to the body,” says Shyam Gollakota, assistant professor of computer science and engineering at the University of Washington.

These “on-body” transmissions offer a more secure way to transmit authenticating information between devices that touch parts of your body - such as a smart door lock or wearable medical device - and a phone or device that confirms your identity by asking you to type in a password.

“Let’s say I want to open a door using an electronic smart lock,” says Merhdad Hessar, an electrical engineering doctoral student and co-lead author of the paper. “I can touch the doorknob and touch the fingerprint sensor on my phone and transmit my secret credentials through my body to open the door, without leaking that personal information over the air.”

Works with iPhone and other devices

The research team tested the technique on iPhone and other fingerprint sensors, as well as Lenovo laptop trackpads and the Adafruit capacitive touchpad. In tests with ten different subjects, they were able to generate usable on-body transmissions on people of different heights, weights and body types. The system also worked when subjects were in motion - including while they walked and moved their arms.

“We showed that it works in different postures like standing, sitting, and sleeping,” says co-lead author Vikram Iyer, an electrical engineering doctoral student. “We can also get a strong signal throughout your body. The receivers can be anywhere - on your leg, chest, hands - and still work.”

The team analysed smartphone sensors to understand which of them generates low-frequency transmissions below 30MHZ that travel well through the human body but don’t propagate over the air.

They found fingerprint sensors and touchpads generate signals in the 2 to 10MHZ range and employ capacitive coupling to sense where your finger is in space, and to identify the ridges and valleys that form unique fingerprint patterns.

Credit: Vikram Iyer/University of Washington

Normally, sensors use these signals to receive input about your finger. But the engineers devised a way to use these signals as output that corresponds to data contained in a password or access code. When entered on a smartphone, data that authenticates your identity can travel securely through your body to a receiver embedded in a device that needs to confirm who you are.

Their process employs a sequence of finger scans to encode and transmit data. Performing a finger scan correlates to a 1-bit of digital data and not performing the scan correlates to a 0-bit.

The technology could also be useful for secure key transmissions to medical devices such as glucose monitors or insulin pumps, which seek to confirm someone’s identity before sending or sharing data.

The team achieved bit rates of 50 bits per second on laptop touchpads and 25 bits per second with fingerprint sensors - fast enough to send a simple password or numerical code through the body and to a receiver within seconds.

This represents only a first step, the researchers say. Data can be transmitted through the body even faster if fingerprint sensor manufacturers provide more access to their software.

The original article can be found on the Futurity website.


Print this page | E-mail this page