This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Cold plasma innovatively freshens up French fries

02 December 2016

Bad smells from frying in restaurants and take-away food venues could be eradicated thanks to experiments funded by ESA on the International Space Station.

French fries being deep fried (Credit: FreeImages.com/Dragan Sasic)

Cooking food such as French fries in hot fat or oil releases malodorous molecules that are extremely hard to remove or disperse. These odours are typically destroyed in bulky and expensive commercial cooker hoods by chemicals that create ozone as a by-product – which must be removed because of health concerns. 

Instead, a German manufacturer of deep-fat fryers, Blümchen, is taking a different approach, based on plasma experiments that have been running on the Space Station since 2001.

Plasma is usually a hot, electrically charged gas but it is possible to create ‘cold plasmas’ at room temperature. Cold plasma has proved to be an extremely effective bactericidal agent and can also tackle fungi, viruses and spores. It is safe to touch, which makes it attractive for many applications.

Methods for generating cold plasmas were developed at the Max Planck Institute for Extraterrestrial Physics in Germany, where the notion of using electrons to create the plasma for removing odours was patented.

Funded by ESA and in collaboration with the Russian space agency, scientists led by Professor Gregor Morfill were responsible for the first experiment on the Station. His team took advantage of weightlessness in orbit to study complex plasmas, which provided the impetus to develop the cold plasma technology.

The most recent fourth version of this experiment is still working on the Station, making the plasma study experiment the longest-running in space.

A grant from ESA has helped to transform the knowledge into practical applications on Earth. Since 2013 Prof. Morfill has been CEO of the Terraplasma company, which has already applied the cold plasma to medical and hygiene problems, and to water treatment.

To remove odours, Terraplasma’s new system generates the plasma by sparking a glowing electrical discharge in the air between a short rod electrode sitting in the middle of a cylindrical electrode. The discharge is initially a narrow line about 1mm thick somewhere between the electrodes, but when it is made to move rapidly by a magnetic field it spreads out to produce a plasma disc. The foul air is then passed through this disc for cleaning.

From space to the kitchen

German EurA Consult from ESA’s Technology Transfer Program broker network had long been aware of Prof. Morfill’s specialty and his spin-off successes at Terraplasma, and introduced the technology to Blümchen, who were seeking a better answer for industrial cooker hoods.
“This industry is not one that normally adopts novel technologies, but we recognised a big potential here,” said Johannes Schmidt of EurA Consult.

“It helps that both companies are open-minded, think creatively and can work fast to bring a new development to market.”

“The new design works by using electrons within the plasma to neutralise odours,” explained Prof. Morfill.

“The thin plasma sheet breaks the offending molecules up into harmless components that do not smell and do not need to be extracted afterwards.

“It’s also about a thousand times faster than the traditional chemical method.” 


Print this page | E-mail this page