This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Reconfigurable carbon composite robotic machine tool

05 December 2016

Specialists have joined forces to build what is believed to be the world’s first reconfigurable carbon composite robotic machine tool.

The reconfigurable carbon composite robotic machine tool built by the AMRC (Credit: AMRC)

The carbon composite robot project is part of the AMRC’s contribution to the Factory of the Aircraft Future project, backed by the Aerospace Technology Institute, which was established by the government and aerospace industry to sustain and grow an internationally competitive UK aerospace sector.

The project brings together aerospace giant Airbus and system manufacturer Exechon who specialises in Parallel Kinematic Robots, to develop a new light weight and modular version manufactured and tested by AMRC.

Most robots in industry today use serial linkage technology, where each additional axis is mounted on the previous one, with an ‘end effector’– the business end of the robot, which holds the tools the robot uses – on the final axis.

Parallel Kinematic Robots have the end effector mounted between two or more independently moveable arms, allowing movements in the in X, Y and Z directions to be made using three or more parallel axes.

Proponents say Parallel Kinematic Robots can move as flexibly in the same volume as robots with a single arm but with greater accuracy and stiffness, which makes them more suitable for machining operations.

“Making the structure modular and from composite means the robot can be dismantled and moved easily by two people,” says Ben Morgan head of the AMRC’s Integrated Manufacturing Group (IMG).

“Using composite also means that changes in temperature within a factory will have less of an effect on the robot’s accuracy than if it was entirely made of metal.

“Potential applications include drilling and milling holes in wings faster and without having to make major investment in purpose-built machine tools, which cannot easily be moved.”

The AMRC’s Composite Centre made the bulk of the parts for the robot, its Machining Group and apprentices from its Training Centre made all the metal components and the Integrated Manufacturing Group has assembled and is running trials of the finished robot.


Print this page | E-mail this page