This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Wearable robotic tools designed for surgery

20 March 2017

A wearable robotic system for minimally invasive surgery offers surgeons natural and dexterous movement and the ability to safely navigate through the surgical environment.

Wearable robotic tools (Credit: UWE Bristol/YouTube)

The €4 million research project, named SMARTsurg (SMart WearAble Robotic Teleoperated surgery), funded by the European Commission under the HORIZON 2020 scheme, will be led by Professor Sanja Dogramadzi (Bristol Robotics Laboratory (BRL) and UWE Bristol) with nine partners including North Bristol NHS Trust, Bristol Urological Institute and the Translational Biomedical Research Centre (TBRC) at the University of Bristol, led by Director, Professor Raimondo Ascione. Professor Chris Melhuish, Director of BRL is also involved in the project.

Minimally invasive surgery for some clinical applications is replacing the traditional 'open access' approach, and has been associated with patient benefits such as reduced blood loss, fewer infections and faster recovery. More advanced robotic systems have the potential to replace laparoscopic tools for keyhole surgery in several clinical areas if developed with integrated better vision, precision and ergonomic systems.

Professor Dogramadzi and the pan-EU research team have identified a need for better tools in robot-assisted minimally invasive surgery to support and enhance the surgeon's performance in urology, cardiovascular and orthopaedic fields and to expand the potential for this technology to more complex surgical procedures.

The researchers will develop modern biomedical tools based on clinical feedback that mimic complex human dexterity and senses. These can be worn by the surgeon and transmit the surgeon's own movements to the closed surgical interface without restrictions. This will reduce the overall cognitive, manipulation and training demand.

Three key pieces of hardware will be the starting points in developing the new surgical robotic system. Exoskeletons will fit over the surgeon's hands, which will control the instruments inside the body – a newly developed surgical 'gripper' which mimics the thumb and two fingers of the hand.

The instrument, which goes inside the body, will have haptic abilities, allowing the surgeon to 'feel' the tissues and organs inside the body, just like they do during conventional surgery. The current prototype has been developed by researchers at Bristol Robotics Laboratory - Dr Antonia Tzemanaki and her supervisory team Professors Dogramadzi, Pipe and Melhuish.

The wearable exoskeleton on the surgeon's hand will enable movement that is more intuitive as well as giving the surgeon the sense of touch. The sense of touch in this system will be dual: current research in haptic systems mainly focuses on the arm/forearm of the user. The system developed in this project will focus on haptic feedback on the fingers of the surgeon as well.

In addition, the researchers will develop smart glasses that enable the surgeon to have a realistic view of what is taking place inside the body while using the advanced robotic tools developed. The smart glasses will allow surgeons to position themselves anywhere in the operating theatre.

Professor Sanja Dogramadzi, of Bristol Robotics Laboratory, says, “In our project the exoskeleton will record the position of the fingers and communicate this to the robotic tools inside the body using tele-operated technology. We want to give existing processes a more natural interface - operating surgeons will not have to do any unusual or unnatural movement. They will be able to use their hands as they would in open incision surgery. This also means that training to use the robotic technology for surgery will be quicker.

“The other part of our system will be smart multifunctional glasses, which will relay live images from inside the body. This is an advance compared to current systems, which use a flat TV-like screen to relay images back to the surgeon.

“The research will use the expertise and feedback of senior surgeons to develop the tools. We will use rapid prototyping to make prototype tools that the surgeons will be able to test and we will incorporate their feedback into the next stage of design. This means we can adapt tools to the needs of different surgical procedures and this user-centred design process places surgeons at the heart of the development of this system.

“We hope our research into designing this wearable system will help to expand the range of surgical procedures that can use robotic assisted systems so that more patients and hospitals can gain the benefits from this type of surgery.”

The team of researchers were led by the University of the West of England (UWE Bristol).

Video courtesy of UWE Bristol. 


Print this page | E-mail this page