This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Testing autonomous ‘soaring with solar’ concept

18 May 2017

Researchers at the US Naval Research Laboratory (NRL) are building on the concept of autonomous cooperative soaring of unmanned aerial vehicles (UAVs).

Holding the PV UAV based on the SBXC sailplane, are members of the ‘Solar-Soaring’ research flight crew (l-r) Dan Edwards and Trent Young (not shown: Chris Bovais, Sam Carter, Matthew Kelly, and Dave Scheiman). (Credit: US Naval Research Lab)

Their research investigates the presence of solar photovoltaics (PV) to the cooperative autonomous soaring techniques, which enables long endurance flights of unmanned sailplanes that use the power of the Sun.

The Solar Photovoltaic and Autonomous Soaring Base Programme and the US Marine Corps' Expeditionary Energy Office (E2O) want to improve the ability of unmanned platforms to support a 24-7 information, surveillance, and reconnaissance (ISR) mission. By doing so, the warfighter will greatly benefit because it will reduce the amount of batteries or fuel they must carry into battle, and improve the availability of continuous coverage of ISR assets.

“NRL has twice flown our solar UAV (based on the SBXC sailplane) over 10 hours using a combination of solar photovoltaics and autonomous soaring as part of the ‘solar-soaring’ research programme,” said Dr. Dan Edwards, aerospace engineer. “This research is investigating the value of combining autonomous soaring algorithms and solar photovoltaics for capturing energy from the environment to extend flight endurance and mission operations of an aircraft.”

A photovoltaic array, custom built in NRL's Vehicle Research Section and Photovoltaic Section, is integrated into the centre wing panel of the PV-SBXC aircraft as a drop-in replacement to the original wing. A power management and distribution system converts the power from the solar arrays into direct current (DC) voltage, which the electric motor can use for propulsion, or recharge a ‘smart battery.’

Additionally, an autonomous soaring software algorithm - that would typically monitor the local vertical winds around the aircraft - commands the aircraft to orbit in any nearby updrafts, very similar to soaring birds. However, the algorithm was disabled for the two solar flights in order to assess the solar-only performance. Passive soaring - meaning no specific manoeuvres are attempted to catch thermals - was still allowed, to let the aircraft turn the motor off if altitude increased because of an updraft along the aircraft’s pre-defined flight path. The autonomous soaring software was tested extensively in previous flight demonstrations in late October 2015.

Researchers at the US Naval Research Laboratory (NRL), Vehicle Research Section and Photovoltaic Section tests a photovoltaic (PV) UAV, shown on takeoff at sunrise, October 14th, 2016 (Credit: US Naval Research Laboratory)

The UAV with solar arrays built at NRL using SunPower Inc. solar cells, flew for 10 hours, 50 minutes on October 14, 2016. Takeoff occurred at 7:20a.m. at 95 percent battery state of charge and landing occurred at 6:10p.m. with the battery at 10 percent state of charge. Thermal activity was very good in the middle of the day and 40 percent of the flight was spent with the motor off, and the solar array partly recharged the battery while the motor was off.

The UAV equipped with solar wings incorporated PV arrays from Alta Devices, Inc. It flew for 11 hours, 2 minutes on April 19, 2017. Takeoff occurred at 7:46a.m., approximately an hour after sunrise, with the battery's state of charge at 90 percent. Landing occurred at 6:48p.m., approximately an hour before sunset, with the battery's state of charge at 26 percent. Thermal activity was very weak and almost all of the flight was spent running the motor. Near solar noon, the solar array provided sufficient power to cruise on solar power alone.

The power management system for both flights was provided by Packet Digital, Inc., as part of a grant from the North Dakota Renewable Energy Council.

“The experiments confirm significant endurance gains are possible by leveraging thermal updrafts and incident solar radiation, rather than ignoring these free sources of energy,” Edwards said. “Future testing will focus on quantifying the trade space between improvements in solar cell efficiency and combining with autonomous soaring for improved solar-recharging.”

Materials provided by US Naval Research Laboratory 


Print this page | E-mail this page