This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

3D printed objects connect to Wi-Fi without electronics

06 December 2017

University of Washington researchers have 3D printed plastic objects and sensors that can collect data and communicate with Wi-Fi devices on their own.

The 3-D printed gears (in white) and spring (blue spiral) toggle a switch (white box with grey surface) made of conductive plastic. (Credit: Mark Stone/University of Washington)

With CAD models that the team is making available to the public, 3D printing enthusiasts will be able to create objects out of commercially available plastics that can wirelessly communicate with other smart devices. That could include a battery-free slider that controls music volume, a button that automatically orders more cornflakes from Amazon or a water sensor that sends an alarm to your phone when it detects a leak.

“Our goal was to create something that just comes out of your 3D printer at home and can send useful information to other devices,” said co-lead author and UW electrical engineering doctoral student Vikram Iyer. “But the big challenge is how do you communicate wirelessly with Wi-Fi using only plastic? That’s something that no one has been able to do before.”

To 3D print objects that can communicate with commercial Wi-Fi receivers, the team employed backscatter techniques that allow devices to exchange information. In this case, the team replaced some functions normally performed by electrical components with mechanical motion activated by springs, gears, switches and other parts that can be 3D printed - borrowing from principles that allow battery-free watches to keep time.

Backscatter systems use an antenna to transmit data by reflecting radio signals emitted by a Wi-Fi router or other device. Information embedded in those reflected patterns can be decoded by a Wi-Fi receiver. In this case, the antenna is contained in a 3D printed object made of conductive printing filament that mixes plastic with copper.

The attachment above can sense when your laundry soap is running low — and automatically order more. (Credit: Mark Stone/University of Washington_

Physical motion - pushing a button, laundry soap flowing out of a bottle, turning a knob, removing a hammer from a weighted tool bench - triggers gears and springs elsewhere in the 3D printed object that cause a conductive switch to intermittently connect or disconnect with the antenna and change its reflective state.

Information - in the form of 1s and 0s - is encoded by the presence or absence of the tooth on a gear. Energy from a coiled spring drives the gear system, and the width and pattern of gear teeth control how long the backscatter switch makes contact with the antenna, creating patterns of reflected signals that can be decoded by a Wi-Fi receiver.

“As you pour detergent out of a Tide bottle, for instance, the speed at which the gears are turning tells you how much soap is flowing out. The interaction between the 3D printed switch and antenna wirelessly transmits that data,” said senior author Shyam Gollakota, an associate professor in the Paul G. Allen School of Computer Science & Engineering. “Then the receiver can track how much detergent you have left and when it dips below a certain amount, it can automatically send a message to your Amazon app to order more.”

The team from the UW Networks & Mobile Systems Lab 3D printed several different tools that were able to sense and send information successfully to other connected devices: a wind meter, a water flow meter and a scale. They also printed a flow meter that was used to track and order laundry soap, and a test tube holder that could be used for either managing inventory or measuring the amount of liquid in each test tube.

They also 3D printed Wi-Fi input widgets such as buttons, knobs and sliders that can be customised to communicate with other smart devices in the home and enable a rich ecosystem of “talking objects” that can seamlessly sense and interact with their surroundings.

Using a different type of 3D printing filament that combines plastic with iron, the team also leveraged magnetic properties to invisibly encode static information in 3D printed objects - which could range from barcode identification for inventory purposes or information about the object that tells a robot how to interact with it.

“It looks like a regular 3D printed object but there’s invisible information inside that can be read with your smartphone,” said Allen School doctoral student and co-lead author Justin Chan.

Video courtesy of Paul G. Allen School


Print this page | E-mail this page