This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

VR lets users control robots from miles away

15 December 2017

A new software programme allows people using virtual reality hardware to control robots over the internet and become immersed in the robot's surroundings.

Brown University undergraduate Eric Rosen operates a Baxter robot using a virtual reality interface developed in Brown's Humans to Robots lab. (Credit: Nick Dentamaro)

Even as autonomous robots get better at doing things on their own, there will still be plenty of circumstances where humans might need to step in and take control. The new software allows remote control over the robots and helps users to become immersed in a robot’s surroundings despite being miles away physically.

The software connects a robot’s arms and grippers as well as its on-board cameras and sensors to off-the-shelf virtual reality hardware via the internet.

Using handheld controllers, users can control the position of the robot’s arms to perform intricate manipulation tasks just by moving their own arms. Users can step into the robot’s metal skin and get a first-person view of the environment, or can walk around the robot to survey the scene in the third person - whichever is easier for accomplishing the task at hand.

The data transferred between the robot and the virtual reality unit are compact enough to be sent over the internet with minimal lag, making it possible for users to guide robots from great distances.

“We think this could be useful in any situation where we need some deft manipulation to be done, but where people shouldn’t be,” says David Whitney, a graduate student at Brown University who co-led the development of the system.

“Three examples we were thinking of specifically were in defusing bombs, working inside a damaged nuclear facility, or operating the robotic arm on the International Space Station.”

Whitney co-led the work with undergraduate student Eric Rosen. Both work in the Humans to Robots lab, which Stefanie Tellex, an assistant professor of computer science, leads.

Even highly sophisticated robots are often remotely controlled using some fairly unsophisticated means - often a keyboard or something like a video game controller and a two-dimensional monitor. That works fine, Whitney and Rosen say, for tasks like driving a wheeled robot around or flying a drone, but can be problematic for more complex tasks.

“For things like operating a robotic arm with lots of degrees of freedom, keyboards and game controllers just aren’t very intuitive,” Whitney says. And mapping a three-dimensional environment onto a two-dimensional screen could limit one’s perception of the space the robot inhabits.

Whitney and Rosen thought virtual reality might offer a more intuitive and immersive option. Their software links together a Baxter research robot with an HTC Vive, a virtual reality system that comes with hand controllers. The software uses the robot’s sensors to create a point-cloud model of the robot itself and its surroundings, which is transmitted to a remote computer connected to the Vive. Users can see that space in the headset and virtually walk around inside it. At the same time, users see live high-definition video from the robot’s wrist cameras for detailed views of manipulation tasks to be performed.

For their study, the researchers showed that they could create an immersive experience for users while keeping the data load small enough that it could be carried over the internet without a distracting lag.

A user in Providence, Rhode Island, for example, was able to perform a manipulation task - the stacking of plastic cups one inside the others - using a robot 41 miles away in Cambridge, Massachusetts.

In additional studies, 18 novice users were able to complete the cup-stacking task 66 percent faster in virtual reality compared with a traditional keyboard-and-monitor interface. Users also reported enjoying the virtual interface more, and they found the manipulation tasks to be less demanding compared with keyboard and monitor.

Rosen thinks the increased speed in performing the task was due to the intuitiveness of the virtual reality interface.

“In VR, people can just move the robot like they move their bodies, and so they can do it without thinking about it,” Rosen says. “That lets people focus on the problem or task at hand without the increased cognitive load of trying to figure out how to move the robot.”

The researchers plan to continue developing the system. The first iteration focused on a fairly simple manipulation task with a robot that was stationary in the environment. They’d like to try more complex tasks and later combine manipulation with navigation. They’d also like to experiment with mixed autonomy, where the robot does some tasks on its own and the user takes over for other tasks.

The researchers have made the system freely available online. They hope other robotics researchers might give it a try and take it in new directions of their own.

The researchers presented a paper describing the system and evaluating its usability at the International Symposium on Robotics Research in Chile.

Source: Brown University

The original article can be found on the Futurity website

Print this page | E-mail this page