This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Engineering new structures for advanced rotorcraft concepts

20 April 2018

Engineers have developed a technique that causes a composite material to become stiffer and stronger on-demand when exposed to ultraviolet light.

Army researchers imagine a rotorcraft concept, which represents reactive reinforcements that when exposed to ultraviolet light will increase the mechanical behavior on-demand. (Credit U.S. Army)

This on-demand control of composite behaviour could enable a variety of new capabilities for future Army rotorcraft design, performance and maintenance.

The engineers are from the U.S. Army Research Laboratory and the University of Maryland. ARL's Dr. Frank Gardea, a research engineer, said the focus of the research was on controlling how molecules interact with each other. He said the aim was to "have them interact in such a way that changes at a small size, or nanoscale, could lead to observed changes at a larger size, or macroscale."

Dr. Bryan Glaz, chief scientist of ARL's Vehicle Technology Directorate said "an important motivation for this work is the desire to engineer new structures, starting from the nanoscale, to enable advanced rotorcraft concepts that have been proposed in the past, but were infeasible due to limitations in current composites. One of the most important capabilities envisioned by these concepts is a significantly reduced maintenance burden due to compromises we make to fly at high speeds, he said.

The reduced scheduled maintenance of future Army aviation platforms is an important technological driver for future operating concepts.

"The enhanced mechanical properties with potentially low weight penalties, enabled by the new technique, could lead to nanocomposite based structures that would enable rotorcraft concepts that we cannot build today," Glaz said.

The joint work, recently published in Advanced Materials Interfaces (DOI: 10.1002/admi.201800038), shows that these composite materials could become 93 percent stiffer and 35 percent stronger after a five minute exposure to ultraviolet light.

The technique consists of attaching ultraviolet light reactive molecules to reinforcing agents like carbon nanotubes. These reactive reinforcing agents are then embedded in a polymer. Upon ultraviolet light exposure, a chemical reaction occurs such that the interaction between the reinforcing agents and the polymer increases, thus making the material stiffer and stronger.

The researchers said the chemistry used here is generally applicable to a variety of reinforcement/polymer combinations thereby expanding the utility of this control method to a wide range of material systems.

"This research shows that it is possible to control the overall material property of these nanocomposites through molecular engineering at the interface between the composite components. This is not only important for fundamental science but also for the optimisation of structural component response," said Dr. Zhongjie Huang, a postdoctoral research fellow at the University of Maryland.

Army researchers conceived of this fundamental approach for the potential of "enabling new leap-ahead capabilities in support of the Future Vertical Lift Army Modernisation Priority," officials said.

"In this instance, the development of advanced structures to enable leap-ahead Army aviation capabilities not currently feasible due to limitations in mechanical properties of current materials," Glaz said. "This is especially important for the envisioned future operating environment which will require extended periods of operation without the opportunity to return to stationary bases for maintenance."

Some particularly attractive design options that correspond to lower mechanical loads and vibration are not currently achievable due to limitations in structural damping in hingeless blade or wing structures.

Future structures based on this work may help lead to new composites with controlled structural damping and low weight that could enable low maintenance, high speed rotorcraft concepts that are currently not feasible (e.g. soft in-plane tiltrotors).

In addition, controllable mechanical response will allow for the development of adaptive aerospace structures that could potentially accommodate mechanical loading conditions.


Print this page | E-mail this page