This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Stretchable electronic skin for human-machine interaction

29 November 2018

Researchers have developed an ultrathin, stretchable electronic skin, which could be used for a variety of human-machine interactions.

Flexible electronic skin aids human-machine interactions. (Credit: American Chemical Society)

Human skin contains sensitive nerve cells that detect pressure, temperature and other sensations that allow tactile interactions with the environment. To help robots and prosthetic devices attain these abilities, scientists are trying to develop electronic skins. Now researchers report a new method in ACS Applied Materials & Interfaces that creates an ultrathin, stretchable electronic skin, which could be used for a variety of human-machine interactions.

Electronic skin could be used for many applications, including prosthetic devices, wearable health monitors, robotics and virtual reality. A major challenge is transferring ultrathin electrical circuits onto complex 3D surfaces and then having the electronics be bendable and stretchable enough to allow movement. Some scientists have developed flexible "electronic tattoos" for this purpose, but their production is typically slow, expensive and requires clean-room fabrication methods such as photolithography. Mahmoud Tavakoli, Carmel Majidi and colleagues wanted to develop a fast, simple and inexpensive method for producing thin-film circuits with integrated microelectronics.

In the new approach, the researchers patterned a circuit template onto a sheet of transfer tattoo paper with an ordinary desktop laser printer. They then coated the template with silver paste, which adhered only to the printed toner ink. On top of the silver paste, the team deposited a gallium-indium liquid metal alloy that increased the electrical conductivity and flexibility of the circuit. Finally, they added external electronics, such as microchips, with a conductive "glue" made of vertically aligned magnetic particles embedded in a polyvinyl alcohol gel. The researchers transferred the electronic tattoo to various objects and demonstrated several applications of the new method, such as controlling a robot prosthetic arm, monitoring human skeletal muscle activity and incorporating proximity sensors into a 3D model of a hand.

Video courtesy of American Chemical Society 


Print this page | E-mail this page