This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

“GO dough” is literally reshaping the world of graphene

28 January 2019

A team has turned graphene oxide into a soft, mouldable and kneadable play dough that can be shaped and reshaped into free-standing, three-dimensional structures.

Highly processable and versatile, GO dough can be readily reshaped by cutting, pinching, moulding and carving. (Credit: Northwestern University)

Called “GO dough,” the product might be fun to play with, but it’s more than a toy. The malleable material solves several long-standing – and sometimes explosive – problems in the graphene manufacturing industry.

“Currently graphene oxide is stored as dry solids or powders, which are prone to combustion and explosion,” said Jiaxing Huang, who led the study at Northwestern University. “Or they have to be turned into dilute dispersions, which multiply the material’s mass by hundreds or thousands.”

Huang recounted his most recent shipment of 5 kilograms of graphene oxide, which was dispersed in 500 litres of liquid. “It had to be delivered in a truck,” he said. “The same amount of graphene oxide in dough form would weigh about 10 kilograms, and I could carry it myself.”

Graphene oxide, which is a product of graphite oxidation, is often used to make graphene, a single-atom-layer thick sheet of carbon that is remarkably strong, lightweight and has potential for applications in electronics and energy storage.

Just add water 

Huang’s team made GO dough by adding an ultra-high concentration of graphene oxide to water. If the team had used binding additives, they would have had to further process the material to remove these additives in order to return graphene oxide to its pure form.

“Adding binders such as plastics could turn anything into a dough state,” Huang said. “But these additives often significantly alter the material’s properties.”

After being shaped into structures, the dough can be converted into dense solids that are electrically conductive, chemically stable and mechanically hard. Or, more water can be added to the dough to transform it into a high-quality GO dispersion on demand. The dough can also be processed further to make bulk graphene oxide and graphene materials of different forms with tuneable microstructures. Huang hopes that GO dough’s ease of use could help graphene meet its much-anticipated potential as a super material.

“My dream is to turn graphene-based sheets into a widely accessible, readily usable engineering material, just like plastic, glass and steel,” Huang said. “I hope GO dough can help inspire new uses of graphene-based materials, just like how play dough can inspire young children’s imagination and creativity.”


Print this page | E-mail this page