This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

High five a virtual character! New virtual reality device simulates feel of solid objects

29 April 2020

Device uses multiple strings attached to the hand and fingers to simulate the feel of obstacles and heavy objects.

(Image: Carnegie Mellon University)

Today's virtual reality systems can create immersive visual experiences, but seldom do they enable users to feel anything – particularly walls, appliances and furniture. A new device developed at Carnegie Mellon University does just that.

By locking the strings when the user's hand is near a virtual wall, for instance, the device simulates the sense of touching the wall. Similarly, the string mechanism enables people to feel the contours of a virtual sculpture, sense resistance when they push on a piece of furniture or even give a high five to a virtual character.

Cathy Fang, who will graduate from CMU next month with a joint degree in Mechanical Engineering and Human-Computer Interaction, said the shoulder-mounted device takes advantage of spring-loaded strings to reduce weight, consume less battery power and keep costs low.

“Elements such as walls, furniture and virtual characters are key to building immersive virtual worlds, and yet contemporary VR systems do little more than vibrate hand controllers,” said Chris Harrison, Assistant Professor in CMU's Human-Computer Interaction Institute (HCII). 

User evaluation of the multi-string device, as reported by co-authors Harrison, Fang, Robotics Institute engineer Matthew Dworman and HCII doctoral student Yang Zhang, found it was more realistic than other haptic techniques.

"I think the experience creates surprises, such as when you interact with a railing and can wrap your fingers around it," Fang said. "It's also fun to explore the feel of irregular objects, such as a statue."

Other researchers have used strings to create haptic feedback in virtual worlds but, typically, they use motors to control the strings. Motors wouldn't work for the CMU researchers, who envisioned a system both light enough to be worn by the user and affordable for consumers.

"The downside to motors is they consume a lot of power," Fang said. "They also are heavy."

Instead of motors, the team used spring-loaded retractors, similar to those seen in key chains or ID badges. They added a ratchet mechanism that can be rapidly locked with an electrically controlled latch. The springs, not motors, keep the strings taut. Only a small amount of electrical power is needed to engage the latch, so the system is energy efficient and can be operated on battery power.

The researchers experimented with a number of different strings and string placements, eventually concluding that attaching one string to each fingertip, one to the palm and one to the wrist provided the best experience. A Leap Motion sensor, which tracks hand and finger motions, is attached to the VR headset. When it senses that a user's hand is in proximity to a virtual wall or another obstacle, the ratchets are engaged in a sequence suited to those virtual objects. The latches disengage when the person withdraws their hand.

The entire device weighs less than 10 ounces. The researchers estimate that a mass-produced version would cost less than $50.

Fang said the system would be suitable for VR games and experiences that involve interacting with physical obstacles and objects, such a maze. It might also be used for visits to virtual museums. In a time when physically visiting retail stores is not always possible, "you might also use it to shop in a furniture store," she added.

Print this page | E-mail this page