This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Blu-ray disc lasers could be used to destroy COVID-19

27 May 2020

Low-cost technology could be employed in hand-held devices and ventilation systems, say scientists.

Chris Barty, UCI Distinguished Professor of physics & astronomy. (Image: Steve Zylius / UCI)

A new weapon in the arsenal against the coronavirus may be sitting in your home entertainment console. A team led by physicist Chris Barty of the University of California, Irvine is researching the use of diodes from Blu-ray digital video disc devices as deep-ultraviolet laser photon sources to rapidly disinfect surfaces and the indoor air that swirls around us.

Barty, UCI Professor of Physics & Astronomy, said that such UV light sterilisers would be cheap compared to current medical- and scientific-grade systems and that it’d be possible to deploy them almost anywhere.

“If these sources are successful, I think you could build them into a mask and clean the air that’s coming in and out of you,” he said. “Or, you could set these things up in the air circulation ducts of major buildings, and the airflow that goes through could be sterilised.”

They could also function in hand-held wand devices, Barty said, or as a “light curtain” through which people walk as they enter a room, exposing them to UV-C radiation. He noted that at this wavelength – between 200 and 260 nanometres – UV radiation will destroy viruses and other pathogens but poses minimal risk to humans.

“There is evidence to suggest that the UV-C band is actually not an issue for us, especially at the shorter wavelengths, because it gets absorbed by dead skin cells or by a teardrop on your eye,” said Barty, head of UCI’s Convergent Optical Sciences Initiative.

“Hospitals use UV-emitting robots that are about the size of a dorm room refrigerator. They just wheel them in and plug them into the wall to sterilise the place, but everybody has to leave because, in addition to UV-C, they make a lot of UV-A and UV-B, which can cause harm to humans.”

The cost of these roaming hospital sterilisers – that are based on high-current mercury discharge lamps – is too high for deployment at the scale that may be needed to combat the coronavirus, present everywhere from cruise ships to meatpacking plants. Barty said that Blu-ray diode lasers offer a potential path to a compact, economical solution, since the technology is ubiquitous and priced in the range of tens of dollars per unit.

His team is developing a way to halve the wavelength of photons emitted by Blu-ray diodes – which is around 405 nanometres – to the germicidal UV-C band.

“This is more of an applied physics versus a pure physics view of the world,” he said. “The issue is not whether you can make UV-C light. It’s whether you can fundamentally reduce the dollar-per-watt output of a device to a place that it becomes compelling to use UV-C light.”

According to Barty, Blu-ray sterilisers could be made in the “same kind of quantities as you can make other telecommunications components, so you could really change the game.”

Looking at the current landscape, in which there’s an all-hands-on-deck effort to develop vaccines to prevent COVID-19 infections and drugs to treat people sick with the virus, Barty observed, “I would prefer that we just destroy it.”



More information...

Print this page | E-mail this page