This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

New inkjet-printed solar cells are so thin, light & flexible they can rest on a bubble

27 August 2020

The new cells could offer an alternative way to power novel electronic devices, such as medical skin patches, where conventional energy sources are unsuitable.

© 2020 KAUST; Anastasia Serin

"The tremendous developments in electronic skin for robots, sensors for flying devices and biosensors to detect illness are all limited in terms of energy sources," says Eloïse Bihar, a postdoc in the team of Derya Baran, who led the research. "Rather than bulky batteries or a connection to an electrical grid, we thought of using lightweight, ultrathin organic solar cells to harvest energy from light, whether indoors or outdoors."

Until now, ultrathin organic solar cells were typically made by spin-coating or thermal evaporation, which are not scalable and which limit device geometry. This technique involved using a transparent and conductive, but brittle and inflexible, material called indium tin oxide (ITO) as an electrode. To overcome these limitations, the team applied inkjet printing. "We formulated functional inks for each the layer of the solar cell architecture," says Daniel Corzo, a PhD student in Baran's team.

Instead of ITO, the team printed a transparent, flexible, conductive polymer called PEDOT:PSS, or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The electrode layers sandwiched a light-capturing organic photovoltaic material. The whole device could be sealed within parylene, a flexible, waterproof, biocompatible protective coating.

Although inkjet printing is very amenable to scale up and low-cost manufacturing, developing the functional inks was a challenge, Corzo notes. "Inkjet printing is a science on its own," he says. "The intermolecular forces within the cartridge and the ink need to be overcome to eject very fine droplets from the very small nozzle. Solvents also play an important role once the ink is deposited because the drying behaviour affects the film quality."

After optimising the ink composition for each layer of the device, the solar cells were printed onto glass to test their performance. They achieved a power conversion efficiency (PCE) of 4.73 percent, beating the previous record of 4.1 percent for a fully printed cell. For the first time, the team also showed that they could print a cell onto an ultrathin flexible substrate, reaching a PCE of 3.6 percent.

"Our findings mark a stepping-stone for a new generation of versatile, ultra lightweight printed solar cells that can be used as a power source or be integrated into skin-based or implantable medical devices," Bihar says.



More information...

Print this page | E-mail this page

Igus - Tech Up, Costs DownOmron Electronics