This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

KAIST research team develops flexible solid state battery

07 August 2012

The technological advance of thin, lightweight flexible displays has encouraged the development of flexible batteries with a high power density and thermal stability.

Although rechargeable lithium-ion batteries (LIB) have been regarded as a strong candidate for a high-performance flexible energy source, compliant electrodes for bendable LIBs are restricted to only a few materials (organic materials or nano/micro structured inorganic materials mixed with polymer binders). The performance of LIBs has not been sufficient either, thereby difficult to apply to flexible consumer electronics including rollable displays.

In addition, lithium transition metal oxides used as a cathode electrode have to be treated at high temperatures (~ 700 degrees for lithium cobalt oxide). However, it is not possible to anneal the metal oxides, an active material, at this high temperature on flexible polymer substrates.

Now, Professor Keon Jae Lee from the Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) has developed a high performance flexible all-solid-state battery, an essential energy source for flexible displays.

Professor Lee's research team has developed a high performance flexible LIB structured with high density inorganic thin films by using a universal transfer approach. The thin film LIB fabricated on a mica substrate with high annealing temperature is transferred onto polymer substrates through a simple physical delamination of sacrificial substrates.

Professor Lee said, "The advent of a high performance flexible thin film battery will accelerate the development of next-generation fully flexible electronic systems in combination with existing flexible components such as display, memory, and LED."

The research team is currently investigating a laser lift-off technology to facilitate the mass production of flexible LIBs and 3D stacking structures to enhance charge density of batteries.

A paper on this subject: "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems", appears in the journal, Nano Letters


Print this page | E-mail this page