This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Advance in X-ray imaging shines light on nanomaterials

13 August 2012

An advance in X-ray imaging has revealed the dramatic three-dimensional shape of gold nanocrystals, and is likely to shine a light on the structure of other nano-scale materials.

Left: three dimensional image of a gold nanocrystal obtained previously; right: the image using the newly developed method

Described today in Nature Communications, the new technique improves the quality of nanomaterial images, made using X-ray diffraction, by accurately correcting distortions in the X-ray light. 

Dr Jesse Clark, lead author of the study from the London Centre for Nanotechnology said: "With nanomaterials playing an increasingly important role in many applications, there is a real need to be able to obtain very high quality three dimensional images of these samples.

“Up until now we have been limited by the quality of our X-rays. Here we have demonstrated that with imperfect X-ray sources we can still obtain very high quality images of nanomaterials."

Hitherto, most nanomaterial imaging has been done using electron microscopy. X-ray imaging is an attractive alternative as X-rays penetrate further into the material than electrons and can be used in ambient or controlled environments.

However, making lenses that focus X-rays is very difficult. As an alternative, scientists use the indirect method of coherent diffraction imaging (CDI), where the diffraction pattern of the sample is measured (without lenses) and inverted to an image by computer. 

Nobel Prize winner Lawrence Bragg suggested this method in 1939 but had no way to determine the missing phases of the diffraction, which are today provided by computer algorithms.

CDI can be performed very well at X-ray sources such as the UK's Diamond Light Source, which have much higher coherent flux than earlier machines. CDI is gaining momentum in the study of nanomaterials, but, until now, has suffered from poor image quality, with broken or non-uniform density. This had been attributed to imperfect coherence of the X-ray light used.

The dramatic three-dimensional images of gold nanocrystals presented in this study demonstrate that this distortion can be corrected by appropriate modelling of the coherence function.


Professor Ian Robinson, London Centre for Nanotechnology and author of the paper said: “The corrected images are far more interpretable that ever obtained previously and will likely lead to new understanding of structure of nanoscale materials.”

The method should also work for free-electron-laser, electron- and atom-based diffractive imaging.

Referring to the image above, shown on the left is the three dimensional image of a gold nanocrystal obtained previously while on the right is the image using the newly developed method. The features of the nanocrystal are vastly improved in the image on the right. The black scale bar is 100 nanometres (1 nanometre = 1 billionth of a meter).




Contact Details and Archive...

Print this page | E-mail this page

Drives and Controls 2020