This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Magnetoelectric materials promise advances in computing technology

08 February 2013

Physicists are able to control magnetic order in a class of materials known as magnetoelectrics, paving the way to next-generation memory storage devices.

An illustration of a titanium-europium oxide cage lattice studied in the experiment (image: Renee Carlson)

Although scientists have been aware that magnetism and electricity are two sides of the same proverbial coin for almost 150 years, researchers are still trying to find new ways to use a material’s electric behaviour to influence its magnetic behaviour, or vice versa.

Thanks to new research by an international team of researchers led by the US Department of Energy’s Argonne National Laboratory, physicists have developed new methods for controlling magnetic order in a particular class of materials known as magnetoelectrics.

Magnetoelectrics get their name from the fact that their magnetic and electric properties are coupled to each other. Because this physical link potentially allows control of their magnetic behaviour with an electrical signal or vice versa, scientists have taken a special interest in magnetoelectric materials.

"Electricity and magnetism are intrinsically coupled – they’re the same entity," said Philip Ryan, a physicist at Argonne’s Advanced Photon Source. "Our research is designed to accentuate the coupling between the electric and magnetic parameters by subtly altering the structure of the material."

The Argonne-led team focused on the compound EuTiO3 (europium-titanium oxide), which has a simple atomic structure that suited it especially well to the experiment. The titanium atom sits in the middle of a cage constructed of the europium and oxygen atoms. By first compressing the cage through growing a thin film of EuTiO3 on a similar crystal with a smaller lattice and then applying a voltage, the titanium shifts slightly, electrically polarizing the system, and more importantly, changing the magnetic order of the material.

"The europium and the titanium combine to control the two properties," Ryan said. "The position of the titanium influences the electric behavior, while the europium generates the magnetic nature. There’s a shared responsibility for the system’s coupling behaviour."

This new approach to cross-coupling magnetoelectricity could prove a key step toward the development of next-generation memory storage, improved magnetic field sensors, and many other applications long dreamed about. Unfortunately, scientists still have a way to go to translating these findings into commercial devices.

Potential magnetic and electric memories each have a distinct appeal to researchers. Electric memories allow computers to write data fast and very efficiently.  Magnetic memories are less energy efficient, but are extraordinarily robust.

"The more we learn about magnetoelectrics, the more we open up this space that gives us the best of both worlds," Ryan said.

Because the electric and magnetic parameters in these particular materials are so strongly linked, engineers might also be able to use them in the future to create non-binary memories.

"Instead of having just a ‘0’ or a ‘1,’ you could have a broader range of different values," Ryan said. "A lot of people are looking into what that kind of logic would look like."


Print this page | E-mail this page