This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Helicopter takes to the skies with the power of thought

09 June 2013

A remote controlled helicopter flies through a series of hoops around a college gymnasium using nothing more than a non-invasive brain-computer interface.

The member of the team with the electrode cap is controlling the quadcopter with his thoughts alone

These experiments have a very serious purpose; researchers are hoping to develop future robots that can help restore the autonomy of paralysed victims or those suffering from neurodegenerative disorders.

There were five subjects (three female, two male) who took part in the study and each one was able to successfully control the four-blade helicopter, also known as a quadcopter, quickly and accurately for a sustained amount of time.

Lead author of the study (results of which were published in the June 4 edition of IOP Publishing’s Journal of Neural Engineering) is Professor Bin He from the University of Minnesota College of Science and Engineering. He said the study shows that for the first time, humans are able to control the flight of flying robots using just their thoughts, sensed from non-invasive brain waves.

The non-invasive technique used was electroencephalography (EEG), which recorded the electrical activity of the subjects’ brain through a cap fitted with 64 electrodes.

Facing away from the quadcopter, the subjects were asked to imagine using their right hand, left hand, and both hands together; this would instruct the quadcopter to turn right, left, lift, and then fall, respectively. The quadcopter was driven with a pre-set forward moving velocity and controlled through the sky with the subject’s thoughts.

The subjects were positioned in front of a screen which relayed images of the quadcopter’s flight through an on-board camera, allowing them to see which direction it was travelling in. Brain signals were recorded by the cap and sent to the quadcopter over WiFi.

“In previous work we showed that humans could control a virtual helicopter using just their thoughts," says Professor He. "I initially intended to use a small helicopter for this real-life study; however, the quadcopter is more stable, smooth and has fewer safety concerns.”

After several different training sessions, the subjects were required to fly the quadcopter through two foam rings suspended from the gymnasium ceiling and were scored on three aspects: the number of times they sent the quadcopter through the rings; the number of times the quadcopter collided with the rings; and the number of times they went outside the experiment boundary.

A number of statistical tests were used to calculate how each subject performed.

A group of subjects also directed the quadcopter with a keyboard in a control experiment, allowing for a comparison between a standardised method and brain control.

This process is just one example of a brain–computer interface where a direct pathway between the brain and an external device is created to help assist, augment or repair human cognitive or sensory-motor functions; researchers are currently looking at ways to restore hearing, sight and movement using this approach.

“Our next goal is to control robotic arms using non-invasive brain wave signals, with the eventual goal of developing brain–computer interfaces that aid patients with disabilities or neurodegenerative disorders,” Professor He concludes.


Print this page | E-mail this page