This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Mobile phone video function turns useful diagnostic tool

07 May 2015

A research team has developed a new mobile phone microscope that uses video to automatically detect and quantify infection by parasitic worms in a drop of blood.

CellScope Loa schematic (courtesy of Daniel Fletcher/University of California Berkeley)

This next generation of University of California Berkeley's CellScope technology could help revive efforts to eradicate debilitating diseases in Africa by providing critical information for health providers in the field.

"We previously showed that mobile phones can be used for microscopy, but this is the first device that combines the imaging technology with hardware and software automation to create a complete diagnostic solution," says CellScope pioneer, Professor Daniel Fletcher. "The video CellScope provides accurate, fast results that enable health workers to make potentially life-saving treatment decisions in the field."

The video CellScope, which uses motion instead of molecular markers or fluorescent stains to detect the movement of worms, was as accurate as conventional screening methods, the researchers found. The results of the pilot study, performed in Cameroon, are reported in a paper published in the journal, Science Translational Medicine.

"This research is addressing neglected tropical diseases," says Fletcher. "It demonstrates what technology can do to help fill a void for populations that are suffering from terrible, but treatable diseases."

For this latest generation of the mobile phone microscope, named CellScope Loa, the researchers paired a smartphone with a 3D-printed plastic base where the sample of blood is positioned. The base includes LED lights, microcontrollers, gears, circuitry and a USB port.

Control of the device is automated via an app the researchers developed for this purpose. With a single touch of the screen by the healthcare worker, the phone communicates wirelessly via Bluetooth to controllers in the base to process and analyse the sample of blood.

Gears move the sample in front of the camera, and an algorithm automatically analyses the telltale 'wriggling' motion of the worms in video captured by the phone. The worm count is then displayed on the screen.

Fletcher said previous field tests revealed that automation helped reduce the rate of human error. The procedure takes about two minutes or less, starting from the time the sample is inserted to the display of the results. Pricking a finger and loading the blood onto the capillary adds an additional minute to the time.

The short processing time allows health workers to quickly determine on site whether it is safe to administer IVM.

The researchers are now expanding the study of CellScope Loa to about 40,000 people in Cameroon.


Print this page | E-mail this page