This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Researchers seek to extend Moore's Law with single crystal nanostructures

09 June 2015

IBM researchers have developed a technique for integrating 'III-V' materials into silicon wafers, a breakthrough that may allow an extension to Moore's Law.

Scanning electron microscope images of single crystal structures fabricated using template-assisted selective epitaxy. For better visibility, the silicon is falsely coloured in green, and the compound semiconductor in red (Heinz Schmid/IBM)

A team of IBM researchers in Zurich, Switzerland with support from colleagues in Yorktown Heights, New York has developed a relatively simple, robust and versatile process for growing crystals made from compound semiconductor materials that will allow them be integrated into silicon wafers - deemed an important step toward making future computer chips that will allow integrated circuits to continue shrinking in size and cost even as they increase in performance.

The work, which is published in the journal, Applied Physics Letters, may allow an extension to Moore's Law, the famous observation by Gordon Moore that the number of transistors on an integrated circuit double about every two years. In recent years some in the industry have speculated that our ability to keep pace with Moore's Law may become exhausted eventually unless new technologies are developed.

"The whole semiconductor industry wants to keep Moore’s Law going. We need better performing transistors as we continue down-scaling, and transistors based on silicon won’t give us improvements any more," says Heinz Schmid, a researcher with IBM Research GmbH in Zurich and the lead author of the Applied Physics Letters paper.

For consumers, extending Moore's Law will mean continuing the trend of new computer devices having increasing speed and bandwidth at reduced power consumption and cost. The new technique may also impact photonics on silicon, with active photonic components integrated seamlessly with electronics for greater functionality.

The IBM team fabricated single crystal nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires, made with so-called 'III–V 'materials. Made from alloys of indium, gallium and arsenide, III-V semiconductors are seen as a possible future material for computer chips, but only if they can be successfully integrated into silicon. So far efforts at integration have not been very successful.

The new crystals were grown using an approach called template-assisted selective epitaxy (TASE) using metal organic chemical vapour deposition, which basically starts from a small area and evolves into a much larger, defect-free crystal.

This approach allowed them to lithographically define oxide templates and fill them via epitaxy, in the end making nanowires, cross junctions, nanostructures containing constrictions and 3D stacked nanowires using the already established scaled processes of Si technology.

"What sets this work apart from other methods is that the compound semiconductor does not contain detrimental defects, and that the process is fully compatible with current chip fabrication technology," says Schmid. "Importantly the method is also economically viable."

He concedes that more development will be required to achieve the same control over performance in III-V devices as currently exists for silicon, but the new method is the key to integrating the stacked materials on the silicon platform.

Print this page | E-mail this page