This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Robot based on ESA’s ExoMars rover is tested for oil & gas rig duties

14 July 2015

A robot based on ESA’s ExoMars rover is bidding to win a place on oil and gas production rigs around the world, to work in remote and hazardous environments.

GMV’s Foxiris robot overcoming test obstacles at Total’s gas dehydration production plant at Lacq in France during the Argos Challenge in June 2015 (photo: Total/L Pascal)

The robot, developed by a team led by Spain’s GMV, is competing in the Total oil and gas company’s Autonomous Robot for Gas and Oil Sites (Argos) Challenge. The three-year competition is encouraging the creation of robots to work on hydrocarbon production sites in extreme conditions.

Total envisages that autonomous robots will in future strengthen operators' safety by performing routine, repetitive tasks such as inspections, as well as detecting anomalies, alerting operators and intervening in emergencies.

GMV’s Foxiris consortium was one of five teams chosen in 2014 as a competitor. 

“We want the robot to be able to move anywhere on a production facility that a human can go today,” says Kris Kydd, Total’s Argos project manager. “Then, using artificial intelligence, we want the robots to be able to read and record the values on the instrumentation, and to know autonomously whether they are normal or not. If there is an abnormal situation, the robot has to alert the remote operator.”

The robots must pass three sets of tests at a plant in Lacq, France, the first of which took place in June. The gas dehydration unit features stairs, narrow walkways and obstacles typical of those found in production plants.

Following the first set of five days’ intensive and challenging tests, the Argos jury commented, “Foxiris distinguished itself by its exceptional endurance.”

The Foxiris robot is based on a commercially available design from GMV’s partner IdMind. GMV is using its knowledge of mobile space platforms to develop the end-to-end control and operation software. The third partner is the robotics academic centre at Universidad Politécnica do Madrid.

Foxiris carries internal navigation sensors and scientific instruments including cameras, thermal imagers, gas sensors and microphones. These allow it to inspect and monitor pressure dials, valves and level gauges, detect hot surfaces, sound alarms and localise gas leaks.


Print this page | E-mail this page