This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Instability gives soft actuators a powerful punch

18 August 2015

A team of researchers at Harvard has engineered a new, soft actuator that harnesses the power of instability to trigger instantaneous movement.

These soft actuators harness the power of snap-through instabilities to trigger large outputs with small inputs of fluid (photo: Johannes Overvelde/The Bertoldi Lab)

Soft machines and robots are becoming more and more functional, capable of moving, jumping, gripping an object, and even changing colour. The elements responsible for their actuation motion are often soft, inflatable segments called fluidic actuators. These actuators require large amounts of air or water to change shape, making the machines slow, bulky and difficult to untether.

A team of researchers at the Harvard School of Engineering and Applied Science (SEAS) has engineered a new, soft actuator that harnesses the power of instability to trigger instantaneous movement.

The research was led by Katia Bertoldi and is described in a paper published in the Proceedings of the National Academy of Sciences.

The actuator is inspired by a famous physics experiment in which two balloons are inflated to different sizes and connected via a tube and valve. When the valve is opened, air flows between the balloons. Instead of equalizing in size, as one might expect, the larger balloon inflates more while the smaller balloon deflates.

This unexpected behaviour comes from the balloons' non-linear relationship between pressure and volume, meaning the an increase in volume doesn't necessarily increase the pressure.

"When inflating a balloon, the first few blows are the hardest but after reaching a critical pressure it becomes easier," says SEAS researcher and paper lead author, Johannes Overvelde. "Similar to the balloons, in our research we connect fluidic segments in such a way that an interplay between their non-linear response results in unexpected behaviour. Certain combinations of these interconnected segments can result in fast moving instabilities with negligible change in volume."

These fast-moving instabilities, called 'snap-through' instabilities, trigger large changes in internal pressure, extension, shape, and exerted force, with only small changes in volume. If harnessed, these instabilities would allow soft robots to move quickly without needing to carry or be tethered to a fluid supply.

But first Bertoldi's team had to find a way to control something that, by definition, is uncontrollable.

The team started by building and inflating 36 individual segments with water, and measuring how they responded. Then, using a complex computer algorithm, they determined the responses of all possible combinations of the segments.

A total of 630 possible actuators could be assembled from two segments, each with a different combined response. Some of the combinations showed instabilities, others did not. The team selected the preferred response for a specific application. One combination, for example, would lead to a sudden increase in actuator length, moving it like a worm. Another combination would quickly transfer all volume from one segment to another.

These quick movements could be triggered with small amounts of volume. For example, 1ml of water triggered a snap-through instability that resulted in an internal volume flow of 20ml.

"The beauty of these individual segments is that they are easy and cheap to fabricate from off-the-shelve materials. Yet, when you connect segments you get soft actuators with very complex behaviour," Overvelde says. "By connecting multiple segments, you can embed a simple program in the actuator that is able to perform a complex sequence of local inflation and deflation."

The next step is to test these instabilities in soft robotics.

"Engineers have long avoided instability because it so often represents failure," says Bertoldi. "It's remarkable that instability itself has provided a way to improve and push the field of soft actuators forward."


Print this page | E-mail this page