1 Harmonic Drive - Collaborative technology is improving the way we work with robots

This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Collaborative technology is improving the way we work with robots

04 July 2016

The release of Sphero’s impressive BB-8 Droid toy massively amped up anticipation ahead of last December’s premiere of Star Wars: Episode VII The Force Awakens, and it’s easy to see why.

Not only is the little droid entertaining, it speaks to our desire to increase our interaction with technology – and to have useful robots at hand to help out. This is not necessarily a new concept in industrial, automation or medical settings, but it is advancing. Here, Graham Mackrell, managing director of Harmonic Drive UK, looks at how collaborative robotics is changing the way these machines help the human workforce. 

Robots are now being designed with collaboration in mind, making them part of the team. This is driving increased accuracy and productivity for many businesses, as well as making it safer than ever before to work in the same space as robots - without a cage. 

Part of the team

Collaborative robots are designed, as the name suggests, to operate in the same workspace as the human workforce. Instead of no go areas dominated by machines, we will start to see robots and humans working side-by-side. Lightweight, dexterous and easy to operate, the new wave of robotics wants to be part of the team.

A relative celebrity among existing collaborative robots is Baxter. Rethink Robotics launched Baxter in 2012 and the dual-armed robot has garnered quite a lot of attention, not least because of its affordable price tag which starts at around £20,000. 

Baxter has two 7-axis arms, a torso and an LCD display that acts as a ‘face’, even reacting to human interaction. With sonar, camera sensors and integrated vision for object detection built in it is able to understand when there are humans in its space.  Baxter even works by applying some good old fashioned common sense, being put to use for tasks such as examining parts to see if they meet specifications and then placing them in either pass or reject piles.

Keeping human colleagues safe

Robots like Baxter are relatively lightweight compared to their non-collaborative cousins and many are intended to be used directly alongside human workers. This has obviously generated much debate around health and safety

The International Standards Organisation (ISO) has several standards concerning the use of robots, including ISO 10210-1 Safety of Industrial Robots, ISO 10210-2 Safety of Industrial Robot Integration, and ISO 13482 which outlines performance criteria related to safety for personal care robots.

Within the ISO standards there are four key aspects that govern human-robot collaboration. Stopped state monitoring states that a robot should stop when a human enters a scanned area and continue to monitor until the person leaves the space before starting again, speed and separation monitoring standards state that robot must slow down when a human comes near and should stop if a human comes too close. 

The hand-guiding directive explains that a person should be in direct contact with the robot while they are guiding or ‘training’ it, and, with regards to power force limiting, the ISO standards outline that safety should be achieved by restricting the amount of force available in the system through electrical means or mechanical compliance.

However, there is a reason that the payload in existing collaborative devices is restricted to around 22 pounds and the speeds are a far cry from traditional flexpickers or six axis machines. Anything bigger and faster is prohibited under the regulations. 

And yet, manufacturers of collaborative robots are using technology to go above and beyond the expected. For instance, industry leading single arm robot address power and force limited using torque sensing. This means that apparatus knows when it encounters a human being or another object and when it recognises an increase in torque force or force required for movement, such as in a collision, the arm stops before it can cause harm.

Rethink Robotics has described Baxter as being “self-evidently safe”, thanks to its detailed design with completely back-drivable joints, force sensing and pinch points. The device is aware of the slightest contact with a person and not only stops in response to the touch, but also moves back. This function is achieved thanks to series elastic actuators that use a spring to flex the joints and allow Baxter to ‘judge’ the force being applied and react accordingly.

To ensure consistent, reliable reactions in these types of situations the gears and drives in the robot have to be of the highest quality. It doesn’t matter how reliable sensors are if the robot arm itself cannot stop or move as it should. That’s why companies use high precision gears such as those manufactured by Harmonic Drive. These gears allow for highly accurate movements that can be repeated again and again with perfect precision. 

This level of accuracy and repeatability gives reliable peace of mind that collaborative robots can be relied upon to react to their surroundings. 

Technology advances have also made collaborative robots easy to operate and ‘teach’. Rather than employing an engineer to program and run robots, collaborative devices can be led by the wrist and ‘taught’ what is expected of them or operated using very straight forward menus. Any member of staff can be trained in their operation in a short amount of time. 

Carry on Doctor

As well as keeping their colleagues safe, collaborative robots are helping people who are sick or injured. In actual fact, robots have been used in operating theatres across the globe for quite a while now, and they’ve been doing a rather good job.

The addition of machines to theatre teams, such as the popular Da Vinci robot, enable doctors to perform complex procedures in a seated position, controlling the robot from a console. 

Patients benefit from this approach too. Keyhole surgery can be tricky for human hands to perform as the apparatus used is awkward to handle. A robot arm is steady and more easily directed. Increased precision and faster surgery, that is minimally invasive, reduces both trauma to the patient and over all recovery times.

Such is the potential for collaborative working in the medical field that Google’s life sciences division is working with Johnson & Johnson’s medical device company, Ethicon, to develop surgical robots that use artificial intelligence technology. The two conglomerates are investigating how advanced sensor and imaging technology can complement the knowledge of surgeons in new ways, such as highlighting nerve cells, blood vessels and tumour margins.

The future possibilities for human-robot collaboration are almost limitless, and it’s clear in the way that the technology is developing that these machines are just here to help. Whether that’s helping you increase productivity in your manufacturing line, or supporting a surgeon attempting a complex procedure after being on their feet all day we’re only going to benefit from taking friendly robots out of science fiction and into reality. 

Contact Details and Archive...

Print this page | E-mail this page