This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Graphene Hall sensor optimised for cryogenic applications

02 June 2021

Paragraf introduces the GHS-C Graphene Hall Sensor (GHS), providing the industry’s only viable approach to measuring magnetic field strengths of seven Tesla (T) and above, at temperature extremes below 3 Kelvin (K).

Paragraf has entered volume production of the GHS-C, a Graphene based Hall sensor optimised to provide high field measurements while operating at cryogenic temperatures. It achieves this while dissipating virtually no heat. The cryogenic sensor also allows measurements directly in cold bore, removing the need for room temperature inserts, giving quality data and time savings.

The GHS-C is the only Hall sensor now in volume production that can offer this level of performance at temperatures below 3K. The underlying technology is capable of operating at temperatures even lower, with no loss of performance. This is made possible by the lack of any planar Hall effect in graphene, a unique feature that Paragraf has harnessed. 

This is the latest example of Paragraf’s capabilities and builds on previous product developments. The GHS-C uses graphene optimised and tuned for high field applications, including super-conduction, quantum computing, high-energy physics, low-temperature physics, fusion and space. In addition, as the next generation of particle accelerators rely on magnets that generate field strengths more than 16 T, the GHS-C is already drawing interest from leaders in this field. 

"When looking for high sensitivity, one of the biggest challenges that researchers and engineers working at very low temperatures face is the instability caused by the heat dissipated by conventional sensors," commented Ellie Galanis, Product Owner at Paragraf. "This is particularly relevant when working in cryogenic applications, such as quantum computing. Our GHS-C dissipates nW of heat rather than mWs. This has a much smaller impact on the apparatus, allowing researchers to make accurate and repeatable measurements." 

The GHS-C is now in volume production and is being supplied in the industry-standard LCC 20 package, making it a drop-in replacement for existing Hall sensors, continuing our work in supporting cryogenic equipment manufacturers and quantum computing research worldwide.


Contact Details and Archive...

Print this page | E-mail this page