This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

The seaweed is always greener: Burying harmful carbon dioxide under the sea

06 October 2021

Researchers have found a way to supercharge the formation of carbon dioxide-based crystal structures that could someday store billions of tons of carbon under the ocean floor for centuries, if not forever.

(Image: Shutterstock)
(Image: Shutterstock)

There's a global race to reduce the number of harmful gases in our atmosphere to slow down the pace of climate change, and one way to do that is through carbon capture and sequestration – sucking carbon out of the air and burying it. At this point, however, we're capturing only a fraction of the carbon needed to make any kind of dent in climate change.

Researchers from The University of Texas at Austin, in partnership with ExxonMobil, have made a new discovery that may go a long way in changing that. They have found a way to supercharge the formation of carbon dioxide-based crystal structures that could someday store billions of tons of carbon under the sea.

"I consider carbon capture as insurance for the planet," said Vaibhav Bahadur (VB), an Associate Professor in the Cockrell School of Engineering's Walker Department of Mechanical Engineering and the lead author of a new paper on the research in ACS Sustainable Chemistry & Engineering. 

"It's not enough anymore to be carbon neutral, we need to be carbon negative to undo damage that has been done to the environment over the past several decades."

These structures, known as hydrates, form when carbon dioxide is mixed with water at high pressure and low temperature. The water molecules reorient themselves and act as cages that trap CO2 molecules.

But the process initiates very slowly – it can take hours or even days to get the reaction started. The research team found that by adding magnesium to the reaction, hydrates formed 3,000 times faster than the quickest method in use today, as rapidly as one minute. This is the fastest hydrate formation pace ever documented.

"The state-of-the-art method today is to use chemicals to promote the reaction," Bahadur said. "It works, but it's slower, and these chemicals are expensive and not environmentally friendly."

The hydrates form in reactors. In practice, these reactors could be deployed to the ocean floor. Using existing carbon capture technology, CO2 would be plucked from the air and taken to the underwater reactors where the hydrates would grow. The stability of these hydrates reduces the threat of leaks present in other methods of carbon storage, such as injecting it as a gas into abandoned gas wells.

Figuring out how to reduce carbon in the atmosphere is about as big of a problem as there is in the world right now. And yet, Bahadur says, there are only a few research groups in the world looking at CO2 hydrates as a potential carbon storage option.

"We are only capturing about half of a percent of the amount of carbon that we'll need to by 2050," Bahadur said. "This tells me there is plenty of room for more options in the bucket of technologies to capture and store carbon."

Bahadur has been working on hydrate research since he arrived at UT Austin in 2013. This project is part of a research partnership between ExxonMobil and the Energy Institute at UT Austin.

The researchers and ExxonMobil have filed a patent application to commercialise their discovery. Up next, they plan to tackle issues of efficiency – increasing the amount of CO2 that is converted into hydrates during the reaction – and establishing continuous production of hydrates.


More information...

Print this page | E-mail this page

RS Components Ltd