This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

10 steps to greener production

02 November 2021

Energy reduction is the only way to a carbon-neutral economy – and it can start in the compressor room. The 10 steps to greener production in this guide can be taken right away and cost little. They are part of a continuous process to maintain peak production efficiency.

Step 1: Matching equipment to applications

Companies waste up to 50% of the power needed to generate compressed air through inappropriate use or inefficient systems design. In many cases, they may be able to invest in smaller, cheaper equipment, as long as they have eliminated inefficiencies, as follows:

1) Isolate equipment when it is not in use. Use a simple manual isolation valve or an electronic valve to reduce equipment leakage.  

2) Keep cool. Compressed air equipment should be installed in the coolest location in the facility, and heat generated should be removed from the compressor room. Every 5°C rise in air temperature results in a 2% loss in efficiency.  

3) Keep clean. Dust in the air will block filters. Every 3 millibar pressure drop in the intake filter increases power consumption by 1%.

4) Keep working pressure as low as possible. A higher working pressure means a higher power requirement, higher energy costs and a larger carbon footprint.  

Step 2: Storage and distribution

Air receivers reduce the cycling time of air compressors, which increases their reliability and longevity. A larger air receiver can reduce power consumption. Consider separate compressed air systems if the majority of the production requires a lower pressure than the highest-pressure requirement.

Companies often simply extend their pipework to meet the needs of new equipment, but this can cause pressure drops. There are three inexpensive ways to address this:  

1. Increase the main distribution pipework diameter. This will enlarge the stored volume and also reduce air velocity and pressure drop.  

2. Convert a dead-end or single pipework system into a ring-main pipework system. This increases volume and lowers the pressure drop. Lowering pressure differential by 0.5 bar can reduce the energy consumption of a compressor by up to 4%. 

3. Plug the leaks. The average production facility loses up to 20% of the compressed air it generates to leaks. 

Step 3: Know air purity requirements 

Treating compressed air costs energy and money, so it is important to know the level of air purity required. 

The ISO 8573.1: 2001 table defines the various air quality classes. 

Atmospheric air contains water vapour and dust. When that air is compressed, the concentration of these contaminants also increases, and they must be filtered out to protect equipment and maintain the required level of air purity. 

Step 4: Understanding air demand 

It is important to be aware of peak production periods and times of lower air demand. With a good understanding of actual demand, it may be possible to save money when investing in a new compressor. It is even possible that a new one is not needed.

Step 5: Compressor types and their benefits

There are many types of air compressors, with different advantages based on operating pressure and flow requirements. 

• Piston compressor: Highly efficient on-load and off-load, but may not be suitable for all duty cycles. 

• Scroll compressor: Mainly used in applications requiring small and clean oil-free airflows. Best used in intermittent air demand applications. Simple and easy to maintain.

• Tooth compressor: Oil-free, rotary tooth compressors are suitable for small to medium-sized applications. Good for intermittent and continuous duty applications. 

• Rotary screw compressor: The most common type, used in many applications. Screw compressors can maintain peak efficiency over a wide variety of flows. 

• Centrifugal compressor: Centrifugal compressors are most efficient when running continuously and are best for large volumes of compressed air. 

Step 6: Equipment control 

More pressure means more energy consumption. Control methods differ, and the flow pattern will determine which is best for a given installation. Generally, compressors are set to run within a pressure band; the wider the pressure band, the more energy is consumed. One method to narrow the pressure band is to use variable-speed drive technology that can quickly react to changes in compressed air demand. 

Step 7: Optimising system control 

Central controllers manage the whole compressor room, matching the air supply to demand while offering pressure stability, and contributing significantly to energy efficiency. A smart central controller that accommodates different compressor technologies and control types will lower the overall pressure bands to deliver the required air output in the most efficient way.

Step 8: Energy recovery 

Up to 90% of the electrical energy a compressor uses is converted into heat. That is why energy recovery is the best option to reduce energy consumption. Hot air can be captured and routed to a place where it is useful – for example, to warm a factory during the winter. Or heat can be removed from the cooling system via plate heat exchangers to heat water for boilers or showers.

Step 9: System maintenance 

Maintenance is an essential component of an energy optimisation system. A well-maintained compressed air system will more than pay for its maintenance costs through energy savings. 

Step 10: Remote monitoring 

Smart remote monitoring technologies make it possible to connect industrial equipment over a secure network to mobile devices, to stay informed, optimise equipment performance from any location and receive messages that highlight potential issues. Operators can keep track of key performance parameters, including pressure, flow, motor and dryer speeds, and make adjustments when necessary – improving efficiency and saving energy. 

10 steps in the right direction

Through adopting the 10 steps strategy, not only do compressor owners derive environmental, financial and productivity benefits, but they can make progress towards achieving ISO50001 standard certification. Certification demonstrates an organisation’s commitment to reducing energy use and greenhouse gas emissions. 

Over 70% of companies are continuing to prioritise sustainability and environmental management issues. Adopting good practice and adapting or replacing compressed air systems with energy efficient solutions is their guarantee of a reliable and sustainable air supply that reduces costs and promotes a greener, cleaner environment. 

Contact Details and Archive...

Print this page | E-mail this page

MinitecRegarl Rexnord