This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

3D imaging tracks radiation in cancer patients

09 January 2023

A new method could help medical professionals deliver radiation therapy in real time, with “pinpoint accuracy”.

Image: U-M Optical Imaging Laboratory
Image: U-M Optical Imaging Laboratory

By capturing and amplifying tiny sound waves created when X-rays heat tissues in the body, medical professionals can map the radiation dose within the body, giving them new data to guide treatments. It’s a first-of-its-kind view of an interaction doctors have previously been unable to “see.”

“Once you start delivering radiation, the body is pretty much a black box,” says Xueding Wang, Professor of biomedical engineering and radiology.

“We don’t know exactly where the X-rays are hitting inside the body, and we don’t know how much radiation we’re delivering to the target," adds Wang, corresponding author of the study in Nature Biotechnology.

“And each body is different, so making predictions for both aspects is tricky."

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high-energy waves and particles, usually X-rays. 

The radiation can kill cancer cells outright or damage them so that they can’t spread.

These benefits are undermined by a lack of precision, as radiation treatment often kills and damages healthy cells in the areas surrounding a tumour. It can also raise the risk of developing new cancers.

With real-time 3D imaging, doctors can more accurately direct the radiation toward cancerous cells and limit the exposure of adjacent tissues. To do that, they simply need to “listen.”

When X-rays are absorbed by tissues in the body, they are turned into thermal energy. That heating causes the tissue to expand rapidly, and that expansion creates a sound wave.

The acoustic wave is weak and usually undetectable by typical ultrasound technology. The new ionising radiation acoustic imaging system detects the wave with an array of ultrasonic transducers positioned on the patient’s side. The signal is amplified and then transferred into an ultrasound device for image reconstruction.

With the images in hand, an oncology clinic can alter the level or trajectory of radiation during the process to ensure safer and more effective treatments.

“In the future, we could use the imaging information to compensate for uncertainties that arise from positioning, organ motion, and anatomical variation during radiation therapy,” says first author Wei Zhang, a Research Investigator in biomedical engineering. 

“That would allow us to deliver the dose to the cancer tumour with pinpoint accuracy.”

Another benefit of the new technology is it can be easily added to current radiation therapy equipment without drastically changing the processes to which clinicians are used.

“In future applications, this technology can be used to personalise and adapt each radiation treatment to assure normal tissues are kept to a safe dose and that the tumour receives the dose intended,” says Kyle Cuneo, Associate Professor of radiation oncology at Michigan Medicine.

“This technology would be especially beneficial in situations where the target is adjacent to radiation-sensitive organs, such as the small bowel or stomach.”

The University of Michigan has applied for patent protection and is seeking partners to help bring the technology to market. The National Cancer Institute and the Michigan Institute for Clinical and Health Research supported the work.

Print this page | E-mail this page