This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

These eco-friendly materials use the sun to fast-track water purification

16 January 2023

Using inexpensive raw materials, a new solar-based process is able to purify water at ultra-high speeds.

DGIST Department of Energy Science and Engineering Professor Park Chi-Young's team have successfully developed an 'atypical porous polymer material' that can completely remove phenolic organic contaminants in water. 

The porous material developed this time can efficiently remove not only microplastics in the water, but also very small-sized VOCs based on photothermal effect. 

At the same time, it is expected to be utilised as a high-efficiency adsorption material that can be commercialised in the future, as it has cost competitiveness based on raw materials and enables a solar-based water purification process.

Water pollution caused by the rapid development of the chemical industry is a representative problem in environmental pollution. 

Various water purification technologies and materials have been developed to solve this problem. 

Carbon-based porous materials using existing adsorption mechanisms have limitations in that the adsorption rate is slow and high thermal energy is required for recycling. 

Various materials have been developed to improve contaminant removal efficiency, but it has been difficult to develop materials that simultaneously satisfy excellent recyclability, high efficiency, economic efficiency of raw materials, and industrialization potential.

DGIST Department of Energy Science and Engineering Professor Park Chi-Young's team succeeded in synthesising a porous polymer with excellent adsorption performance and photothermal properties by reacting an inexpensive and effective precursor. 

Also, an additional oxidation reaction was experimented on the polymer, and, based on the results, a hydrophilic functional group was introduced to enable fast adsorption of micro-pollutants in the aquatic environment.

Furthermore, it was confirmed through experiments that the polymer developed by the research team does not require high thermal energy for recycling and can be used multiple times without loss of performance. 

The research team produced a water treatment membrane capable of evaporating water using solar energy as a driving force through the developed polymer's ability to absorb light broadly and convert the absorbed light into heat. 

As a result, it was confirmed that the water treatment membrane coated with the oxidised polymer could purify phenolic contaminants through sunlight.

DGIST Department of Energy Science and Engineering Professor, Park Chi-Young, said, "The technology we developed here is an unrivaled water purification technology with the world's highest purification efficiency, removing more than 99.9 percent of phenolic microplastics and VOC contaminants in water at ultra-high speeds. 

"We expected that it will be a universal technology with high economic efficiency that can purify contaminated water and supply drinking water even in areas where there is no power supply."

Print this page | E-mail this page