This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

European researchers break fusion energy world record

09 February 2024

The Joint European Torus (JET), one of the world’s largest and most powerful fusion machines, has hit a significant milestone in the ability to generate fusion energy reliably.

In JET's final deuterium-tritium experiments (DTE3), high fusion power was consistently produced for five seconds, resulting in a ground-breaking record of 69 megajoules using a mere 0.2mg of fuel.

JET is a tokamak, a design which uses powerful magnetic fields to confine a plasma in the shape of a doughnut. Most approaches to creating commercial fusion favour the use of two hydrogen variants – deuterium and tritium. 

When deuterium and tritium fuse together they produce helium and vast amounts of energy, a reaction that will form the basis of future fusion powerplants.

Professor Ambrogio Fasoli, Programme Manager (CEO) at EUROfusion, said: “Our successful demonstration of operational scenarios for future fusion machines like ITER and DEMO, validated by the new energy record, instil greater confidence in the development of fusion energy. 

“Beyond setting a new record, we achieved things we’ve never done before and deepened our understanding of fusion physics.”

“Not only did we demonstrate how to soften the intense heat flowing from the plasma to the exhaust, we also showed in JET how we can get the plasma edge into a stable state thus preventing bursts of energy from reaching the wall,” said Dr Emmanuel Joffrin, EUROfusion Tokamak Exploitation Task Force Leader from CEA. 

“Both techniques are intended to protect the integrity of the walls of future machines. This is the first time that we've ever been able to test those scenarios in a deuterium-tritium environment.”

Over 300 scientists and engineers from EUROfusion – a consortium of researchers across Europe, contributed to these landmark experiments at the UK Atomic Energy Authority (UKAEA) site in Oxford, showcasing the unparalleled dedication and effectiveness of the international team at JET.

The results solidify JET’s pivotal role in advancing safe, low-carbon, and sustainable fusion energy.

UK Minister for Nuclear and Networks, Andrew Bowie, said: “JET's final fusion experiment is a fitting swansong after all the groundbreaking work that has gone into the project since 1983. We are closer to fusion energy than ever before thanks to the international team of scientists and engineers in Oxfordshire.

“The work doesn’t stop here. Our Fusion Futures programme has committed £650 million to invest in research and facilities, cementing the UK’s position as a global fusion hub.” 

JET concluded its scientific operations at the end of December 2023.

JET’s research findings have critical implications not only for ITER – a fusion research mega-project being built in the south of France – but also for the UK’s STEP prototype powerplant, Europe’s demonstration powerplant, DEMO, and other global fusion projects, pursuing a future of safe, low-carbon, and sustainable energy.

Dr Pietro Barabaschi, ITER Director-General, said: “Throughout its life cycle, JET has been remarkably helpful as a precursor to ITER: in the testing of new materials, in the development of innovative new components, and nowhere more than in the generation of scientific data from Deuterium-Tritium fusion. 

“The results obtained here will directly and positively impact ITER, validating the way forward and enabling us to progress faster toward our performance goals. 

JET has been instrumental in advancing fusion energy for over four decades, symbolising international scientific collaboration, engineering excellence, and the commitment to harness the power of fusion energy – the same reactions that fuel the Sun and stars.

JET demonstrated sustained fusion over five seconds at high power and set a world record in 2021. JET’s first deuterium-tritium experiments took place in 1997.

As it transitions into the next phase of its life cycle for repurposing and decommissioning, a celebration in late February 2024 will honour its founding vision and the collaborative spirit that has driven its success.

The achievements at JET, from the major scientific milestones to the setting of energy records, underscores the facility’s enduring legacy in the evolution of fusion technology.

Its contributions to fusion science and engineering have played a crucial role in accelerating the development of fusion energy, which promises to be a safe, low carbon and sustainable part of the world’s future energy supply.


Print this page | E-mail this page

Minitec