This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Artificial photosynthesis reuses waste to make biodegradable plastics

16 February 2024

Researchers have developed a more efficient method of producing fumaric acid from renewable energy sources.

Image: Yutaka Amao, Osaka Metropolitan University
Image: Yutaka Amao, Osaka Metropolitan University

Amid growing global concern over climate change and plastic pollution, researchers at Osaka Metropolitan University are making great strides in the sustainable production of fumaric acid – a component of biodegradable plastics such as polybutylene succinate, which is commonly used for food packaging. 

The researchers have managed efficiently to produce fumaric acid, which is traditionally derived from petroleum, using renewable resources, carbon dioxide, and biomass-derived compounds.

In a previous study, a research team led by Professor Yutaka Amao of the Research Center for Artificial Photosynthesis at Osaka Metropolitan University demonstrated the synthesis of fumaric acid from bicarbonate and pyruvic acid, a biomass-derived compound, using solar energy

They also succeeded in producing fumaric acid using carbon dioxide obtained directly from the gas phase as a raw material. However, the yield in the production of fumaric acid remained low.

In their latest research, published in Dalton Transactions, the researchers have now developed a new photosensitiser and further advanced an artificial photosynthesis technique that doubles the yield of fumaric acid compared to conventional methods.

“This is an extremely important advancement for the complex bio/photocatalyst system. It is a valuable step forward in our quest to synthesise fumaric acid from renewable energy sources with even higher yields, steering us toward a more sustainable future,” said Professor Amao.


Print this page | E-mail this page