This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

X-rays pave way for low cost, large scale carbon capture

09 August 2012

Scientists from the University of Leeds are using the UK’s Diamond Light Source to investigate the efficiency of calcium oxide based materials as carbon dioxide sorbents.

Current techniques for post-combustion carbon capture filter out CO2 from a power plant’s flue gases as they travel up a chimney. The filter is a solvent that absorbs the CO2, before being heated, releasing water vapour and leaving behind the CO2. In pre-combustion, the CO2 is filtered out by use of a catalytic converter before the fossil fuel is burned and the CO2 is diluted by other flue gases. These methods can prevent 80% to 90% of a power plant’s carbon emissions from entering the atmosphere.

Calcium oxide (CaO) based materials have a large range of applications including pre- and post-combustion carbon capture technologies and thermochemical fuel upgrading. They are low cost, high abundance, have a large sorption capacity and fast reaction rates during the chemical process. They capture CO2 in the temperature range 400-800 °C via the formation of calcium carbonate (CaCO3) which can be regenerated with subsequent release of CO2, ready for compression and storage.

However, after multiple capture and regeneration cycles, the materials’ capacity for capture decreases due to the loss of surface area through sintering, a process that fuses powders together to create a single solid object. Although the surface area can be restored through hydration, the material suffers a reduction in mechanical strength. If these problems can be overcome, CaO based materials could provide a low cost answer for carbon capture on a very large scale.

Led by Dr Valerie Dupont and Dr Tim Comyn from the University of Leeds’ Faculty of Engineering, the team carried out a series of experiments on Diamond’s high resolution powder diffraction beamline, I11, using intense X-rays to study the carbon capture and hydration process in CaO based materials on the nano-scale. Their observations suggest a mechanism for the interaction between CaO and water during hydration.

“We found that the stresses in the calcium hydroxide phase when bound to CaO were more than 20 times higher than its strength, leading to disintegration and the generation of nano-sized crystallites. Although the generation of a high surface area is a good thing, mechanical friability needs to be kept in check in order to achieve long term reliability for these systems, says Dr Tim Comyn, Faculty of Engineering, University of Leeds. “Our analysis provides an explanation of the enhanced capture/disintegration observed in CaO in the presence of steam. Now we understand this, the next step is to develop methods for improving the materials used, and apply the same techniques to other systems.”

Roger Molinder, an Engineering and Physical Sciences Research Council (EPSRC) funded PhD student on the project, says: “Using the high resolution powder diffraction beamline at the Diamond synchrotron was key to this discovery; conventional X-ray sources such as those found at most Universities in the UK provide data with broad peaks, which do not make this sort of analysis possible. From a rigorous analysis of peak shapes arising from the data, we were able to determine the shape and size of the hydroxide phase, and determine the level of stress. Knowledge of these derived parameters is key to understanding the mechanism of sintering/disintegration.”

Using CaO based materials for carbon capture is just one of the ways to combat global warming. Since CaO based materials are low cost, there is an economic incentive to solve the problem of surface area loss to potentially turn this into a method for large scale CO2 capture. These recently published results are a promising step towards improving these low cost methods.

The results of this research are published in the journal Energy & Environmental Science.
 


Contact Details and Archive...

Print this page | E-mail this page

MinitecBritish Encoder Products