This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Fluid-like behaviour of sliding metals gives new clues to wear

13 September 2012

Researchers have discovered a swirling, fluidlike behaviour in a solid piece of metal sliding over another, providing new insights into the mechanisms of wear.

A frame from a high-speed camera sequence of a solid piece of metal sliding over another (photo courtesy of Narayan Sundaram and Yang Guo)
A frame from a high-speed camera sequence of a solid piece of metal sliding over another (photo courtesy of Narayan Sundaram and Yang Guo)

Studies using a microscope and high-speed camera have revealed the formation of bumps, folds, vortex-like features and cracks on the metal surface. The findings were surprising because the experiment was conducted at room temperature and the sliding conditions did not generate enough heat to soften the metal.

"We see phenomena normally associated with fluids, not solids," said Srinivasan Chandrasekar, a Purdue University professor of industrial engineering who is working with postdoctoral research associates Narayan Sundaram and Yang Guo. Numerous mechanical parts, from bearings to engine pistons, undergo such sliding.

"It has been known that little pieces of metal peel off from sliding surfaces," Chandrasekar said. "The conventional view is that this requires many cycles of rubbing, but what we are saying is that when you have surface folding you don't need too many cycles for these cracks to form. This can happen very quickly, accelerating wear."

The researchers are developing models to further study the phenomena and understand the wide-ranging consequences of such fluidlike flow in metals. The findings might also lead to improved surface quality in materials processing.

The team observed what happens when a wedge-shaped piece of steel slides over a flat piece of copper. It was the first time researchers had directly imaged how sliding metals behave on the scale of 100 microns to 1 millimeter, known as the mesoscale.

The observations show how tiny bumps form in front of the steel piece, followed by the swirling vortex-like movement and then the creation of shallow cracks. The folding and cracking were most pronounced when the steel piece was held at a sharp angle to the copper surface.

The researchers hypothesise that the folding and cracking are due in part to a phenomenon similar to 'necking' which happens as a piece of metal is stretched.

Researchers used a laboratory set-up that included a high-speed camera and equipment that applies force to the sliding metals. The behaviour was captured in movies that show the flow in colour-coded layers just below the surface of the copper specimen. Copper is commonly used to model the mechanical behaviour of metals.

"Researchers have never had a good experimental set-up to observe this kind of deformation directly," Guo said. "Our set-up enables us to see the entire history of this fluid-like behaviour as it occurs, whereas more conventional experiments rely on still images taken after the experiment is finished."

Metal surfaces with smaller crystal grains may be less susceptible to the folding and crack formation.

"We need to explore what role grain size plays," Chandrasekar said. "We think there should be some grain size below which this folding mechanism might be less active. We need to explore why - under what conditions - solid metals behave like fluids."

These findings are detailed in a research paper published in the September 7 edition of Physical Review Letters.

Print this page | E-mail this page