This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Researchers aim to create the 'MacGyver' robot

18 December 2012

Robots are increasingly being used in place of humans to explore hazardous and difficult-to-access environments, but they aren’t yet able to interact with their environments as well as humans. If today’s most sophisticated robot was trapped in a burning room by a jammed door, it would probably not know how to locate and use objects in the room to climb over any debris, pry open the door, and escape the building.

In this laboratory simulation of a robot rescue capability, Golem Krang creates a bridge from a board to rescue a trapped human (Georgia Tech Photo: Josh Meister)
In this laboratory simulation of a robot rescue capability, Golem Krang creates a bridge from a board to rescue a trapped human (Georgia Tech Photo: Josh Meister)

A research team led by Professor Mike Stilman at the Georgia Institute of Technology hopes to change that by giving robots the ability to use objects in their environments to accomplish high-level tasks. The team recently received a three-year, $900,000 grant from the US Office of Naval Research to work on such a project. Mike Stilman takes up the story:

“Our goal is to develop a robot that behaves like MacGyver, the American television character from the 1980s who solved complex problems and escaped dangerous situations by using everyday objects and materials he found at hand. We want to understand the basic cognitive processes that allow humans to take advantage of arbitrary objects in their environments as tools. We will achieve this by designing algorithms for robots that make tasks that are impossible for a robot alone possible for a robot with tools.

The research builds on Stilman’s previous work on navigation among movable obstacles that enabled robots to autonomously recognise and move obstacles that were in the way of their getting from point A to point B. Professor Stilman again:

“This project is challenging because there is a critical difference between moving objects out of the way and using objects to make a way. Researchers in the robot motion planning field have traditionally used computerised vision systems to locate objects in a cluttered environment to plan collision-free paths, but these systems have not provided any information about the objects’ functions.”

To create a robot capable of using objects in its environment to accomplish a task, Stilman plans to develop an algorithm that will allow it to identify an arbitrary object in a room, determine the object’s potential function, and turn that object into a simple machine that can be used to complete an action. Actions could include using a chair to reach something high, bracing a ladder against a bookshelf, stacking boxes to climb over something, and building levers or bridges from random debris.

By providing the robot with basic knowledge of rigid body mechanics and simple machines, the robot should be able to autonomously determine the mechanical force properties of an object and construct motion plans for using the object to perform high-level tasks.

For example, exiting a burning room with a jammed door would require a robot to travel around any fire, use an object in the room to apply sufficient force to open the stuck door, and locate an object in the room that will support its weight while it moves to get out of the room. Such skills could be extremely valuable in the future as robots work side-by-side with military personnel to accomplish challenging missions. Paul Bello, director of the cognitive science programme at the Office of Naval Research, certainly agrees.

“Now that robotic systems are becoming more pervasive as team mates for war fighters in military operations, we must ensure that they are both intelligent and resourceful. Professor Stilman’s work on the ‘MacGyver-bot’ is the first of its kind, and is already beginning to deliver on the promise of mechanical team mates able to creatively perform in high-stakes situations.”

To address the complexity of the human-like reasoning required for this type of scenario, Stilman is collaborating with researchers Pat Langley and Dongkyu Choi. Langley is the director of the Institute for the Study of Learning and Expertise (ISLE), and is recognised as a co-founder of the field of machine learning, where he championed both experimental studies of learning algorithms and their application to real-world problems. Choi is an assistant professor in the Department of Aerospace Engineering at the University of Kansas.

Langley and Choi will expand the cognitive architecture they developed, called ICARUS, which provides an infrastructure for modelling various human capabilities like perception, inference, performance and learning in robots.  Professor Stilman concludes:

“We believe a hybrid reasoning system that embeds our physics-based algorithms within a cognitive architecture will create a more general, efficient and structured control system for our robot that will accrue more benefits than if we used one approach alone.”

After the researchers develop and optimise the hybrid reasoning system using computer simulations, they plan to test the software using Golem Krang, a humanoid robot designed and built in Stilman’s laboratory to study whole-body robotic planning and control.

Contact Details and Archive...

Print this page | E-mail this page