This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Nanowire coated graphene sheets make flexible solar cells

03 January 2013

A new kind of flexible photovoltaic cell, based on sheets of graphene coated with nanowires, has been proposed by MIT researchers.

The structure of the new device comprises a flexible layer of graphene, to which is bonded a layer of polymer then a layer of zinc-oxide nanowires (shown in magenta), and finally a layer of a material that can extract energy from sunlight
The structure of the new device comprises a flexible layer of graphene, to which is bonded a layer of polymer then a layer of zinc-oxide nanowires (shown in magenta), and finally a layer of a material that can extract energy from sunlight

The new approach is detailed in a report published in the journal Nano Letters, co-authored by MIT postdoctoral researchers Hyesung Park and Sehoon Chang, associate professor of materials science and engineering Silvija Gradecak, and eight other MIT researchers.

While most of today’s solar cells are made of silicon, these remain expensive because the silicon is generally highly purified and then made into crystals that are sliced thin. Many researchers are exploring alternatives, such as nanostructured or hybrid solar cells; indium tin oxide (ITO) is used as a transparent electrode in these new solar cells. 

Currently, ITO is the material of choice for transparent electrodes, such as in the touch screens now used on smartphones. But the indium used in that compound is expensive, while graphene is made from ubiquitous carbon. 

The new material, Gradecak says, may be an alternative to ITO. In addition to its lower cost, it provides other advantages, including flexibility, low weight, mechanical strength and chemical robustness.

Building semiconducting nanostructures directly on a pristine graphene surface without impairing its electrical and structural properties has been challenging due to graphene’s stable and inert structure, Gradecak explains. So her team used a series of polymer coatings to modify its properties, allowing them to bond a layer of zinc oxide nanowires to it, and then an overlay of a material that responds to light waves — either lead-sulphide quantum dots or a type of polymer called P3HT.

Despite these modifications, Gradecak says, graphene’s innate properties remain intact, providing significant advantages in the resulting hybrid material.

“We’ve demonstrated that devices based on graphene have a comparable efficiency to ITO,” she says — in the case of the quantum-dot overlay, an overall power conversion efficiency of 4.2 percent — less than the efficiency of general purpose silicon cells, but competitive for specialised applications. “We’re the first to demonstrate graphene-nanowire solar cells without sacrificing device performance.”

In addition, unlike the high-temperature growth of other semiconductors, a solution-based process to deposit zinc oxide nanowires on graphene electrodes can be done entirely at temperatures below 175 degrees Celsius, says Chang, a postdoc in MIT’s Department of Materials Science and Engineering (DMSE) and a lead author of the paper. Silicon solar cells are typically processed at significantly higher temperatures.

The manufacturing process is highly scalable, adds Park, the other lead author and a postdoctoral researcher in DMSE and in MIT’s Department of Electrical Engineering and Computer Science. The graphene is synthesized through a process called chemical vapour deposition and then coated with the polymer layers. “The size is not a limiting factor, and graphene can be transferred onto various target substrates such as glass or plastic,” Park adds.

Gradecak cautions that while the scalability for solar cells hasn’t been demonstrated yet (she and her colleagues have only made proof-of-concept devices a half-inch in size) she doesn’t foresee any obstacles to making larger sizes. “I believe within a couple of years we could see [commercial] devices” based on this technology, she says.




Contact Details and Archive...

Print this page | E-mail this page

MinitecMinitec