This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Engineers develop material for high-performance 'supercapacitors'

16 April 2013

Researchers in the United States have synthesised a material that shows a high capability for both the rapid storage and release of energy.

Illustration of a form of nobium oxide synthesised by UCLA researchers (image: UCLA/Nature Materials)
Illustration of a form of nobium oxide synthesised by UCLA researchers (image: UCLA/Nature Materials)

In a paper published in the April 14 issue of the journal Nature Materials, a team, led by Professor Bruce Dunn of the University of California at Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, defines the characteristics of a synthesised form of niobium oxide with a great facility for storing energy.

The material could be used in a 'supercapacitor', a device that combines the high storage capacity of lithium ion batteries and the rapid energy-delivery ability of common capacitors.
UCLA researchers said the development could lead to extremely rapid charging of devices, ranging in applications from mobile electronics to industrial equipment. For example, supercapacitors are currently used in energy-capture systems that help power loading cranes at ports, reducing the use of hydrocarbon fuels.
"With this work, we are blurring the lines between what is a battery and what is a supercapacitor," said Veronica Augustyn, a graduate student in materials science at UCLA and lead author of the paper. "The discovery takes the disadvantages of capacitors and the disadvantages of batteries and does away with them."
Batteries effectively store energy but do not deliver power efficiently because the charged carriers, or ions, move slowly through the solid battery material. Capacitors, which store energy at the surface of a material, generally have low storage capabilities.
Researchers on Dunn's team synthesised a type of niobium oxide that demonstrates substantial storage capacity through 'intercalation pseudocapacitance', in which ions are deposited into the bulk of the niobium oxide in the same way grains of sand can be deposited between pebbles.
As a result, electrodes as much as 40 microns thick — about the same width as many commercial battery components — can quickly store and deliver energy on the same time scales as electrodes more than 100 times thinner.
Dunn emphasises that although the electrodes are an important first step, "further engineering at the nanoscale and beyond will be necessary to achieve practical devices with high energy density that can charge in under a minute."

Print this page | E-mail this page