1 - Nanoscale coupler promises new generation of on-chip optical interconnects

This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Nanoscale coupler promises new generation of on-chip optical interconnects

23 April 2013

A Harvard-led team of researchers has created a new type of nanoscale device that converts an optical signal into waves that travel along a metal surface.

For a full explanation of this graphic, see base of article (image courtesy of Jiao Lin and Samuel Twist)

Significantly, the device can recognise specific kinds of polarised light and accordingly send the signal in one direction or another.
The findings, published in the April 19 issue of the journal, Science, offer a new way to precisely manipulate light at the subwavelength scale without damaging a signal that could carry data. This opens the door to a new generation of on-chip optical interconnects that can efficiently funnel information from optical to electronic devices.
"If you want to send a data signal around on a tiny chip with lots of components, then you need to be able to precisely control where it's going," says co-lead author Balthasar Müller, a graduate student at the Harvard School of Engineering and Applied Sciences (SEAS). "If you don't control it well, information will be lost. Directivity is such an important factor."

The coupler transforms incoming light into a wave called a surface plasmon polariton, a surface ripple in the sea of electrons that exists inside metals.
In the past, it has been possible to control the direction of these waves by changing the angle at which light strikes the surface of the coupler, but, as Müller puts it, "This was a major pain. Optical circuits are very difficult to align, so readjusting the angles for the sake of routing the signal was impractical."
With the new coupler, the light simply needs to come in perpendicularly, and the device does the rest. Acting like a traffic controller, it reads the polarisation of the incoming light wave — which might be linear, left-hand circular, or right-hand circular — and routes it accordingly. The device can even split apart a light beam and send parts of it in different directions, allowing for information transmission on multiple channels.
The coupler consists of a thin sheet of gold, peppered with tiny perforations. But the precise pattern of these slits, arranged rather like herringbones, is at the heart of this device.
"The go-to solution until now has been a series of parallel grooves known as a grating, which does the trick but loses a large portion of the signal in the process," says principal investigator Professor Federico Capasso. "Now perhaps the go-to solution will be our structure. It makes it possible to control the direction of signals in a very simple and elegant way."

An electron micrograph shows the nanoscale perforations at the surface of the plasmonic coupler (image courtesy of Jiao Lin and Balthasar Müller)

Because the new structure is so small — each repeating unit of the pattern is smaller than the wavelength of visible light — the researchers believe it should be easy to incorporate the design into novel technologies, such as flat optics.
Capasso believes there are possibilities for incorporating the new coupler into future high-speed information networks that may combine nanoscale electronics (which currently exist) with optical and plasmonic elements on a single microchip.
Main illustration explained
Two different devices based on the herringbone pattern were presented in the Science paper: a rectangular array and a ring-shaped array (both interpreted in this illustration). Circularly polarised light with waves that wind in opposite directions gets split by both devices, with its waves routed in opposite directions.

For a ring-shaped coupler, this means that plasmons are channelled either toward or away from the centre of the structure. Intensity at the centre of the ring can therefore be switched on and off by manipulating the polarisation of the incoming light.

Print this page | E-mail this page

RS Components Condition Monitoring